Low-cost Powertrain Platform for Hybrid and Electric Vehicles

ATZ worldwide ◽  
2017 ◽  
Vol 119 (3) ◽  
pp. 52-57
Author(s):  
Christoph Danzer ◽  
Jens Liebold ◽  
Erik Schreiterer ◽  
Jörg Müller
Keyword(s):  
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 958
Author(s):  
Maosheng Zhang ◽  
Yu Bai ◽  
Shu Yang ◽  
Kuang Sheng

With the increasing integration density of power control unit (PCU) modules, more functional power converter units are integrated into a single module for applications in electric vehicles or hybrid electric vehicles (EVs/HEVs). Different types of power dies with different footprints are usually placed closely together. Due to the constraints from the placement of power dies and liquid cooling schemes, heat-flow paths from the junction to coolant are possibly inconsistent for power dies, resulting in different thermal resistance and capacitance (RC) characteristics of power dies. This presents a critical challenge for optimal liquid cooling at a low cost. In this paper, a highly integrated PCU module is developed for application in EVs/HEVs. The underlying mechanism of the inconsistent RC characteristics of power dies for the developed PCU module is revealed by experiments and simulations. It is found that the matching placement design of power dies with a heat sink structure and liquid cooler, as well as a liquid cooling scheme, can alleviate the inconsistent RC characteristics of power dies in highly integrated PCU modules. The findings in this paper provide valuable guidance for the design of highly integrated PCU modules.


Author(s):  
Hui Jing ◽  
Rongrong Wang ◽  
Cong Li ◽  
Jinxiang Wang

This article investigates the differential steering-based schema to control the lateral and rollover motions of the in-wheel motor-driven electric vehicles. Generated from the different torque of the front two wheels, the differential steering control schema will be activated to function the driver’s request when the regular steering system is in failure, thus avoiding dangerous consequences for in-wheel motor electric vehicles. On the contrary, when the vehicle is approaching rollover, the torque difference between the front two wheels will be decreased rapidly, resulting in failure of differential steering. Then, the vehicle rollover characteristic is also considered in the control system to enhance the efficiency of the differential steering. In addition, to handle the low cost measurement problem of the reference of front wheel steering angle and the lateral velocity, an [Formula: see text] observer-based control schema is presented to regulate the vehicle stability and handling performance, simultaneously. Finally, the simulation is performed based on the CarSim–Simulink platform, and the results validate the effectiveness of the proposed control schema.


2020 ◽  
Vol 7 (7) ◽  
pp. 192057
Author(s):  
Balkrishna C. Rao

Frugal products possess a proper mix of features including minimal consumption of resources, good functionality under nominal conditions and low cost. Therefore, increasing use of frugal products, that are designed and also fabricated systematically, is crucial to all-round sustainable development . However, their low factor-of-safety rigorous-design makes them inherently prone to failure under conditions of overloading. And multitudes of such coupled-products would create topologies of interconnected complex systems in the foreseeable future whose individual products should be made to adapt against any events of failure to enhance functionality while maintaining low cost. Accordingly, this paper proposes a two-pronged methodology for adaptation of frugal products along with ramifications of complex systems of frugal products. The adaptation methodology is crucial to the functioning of individual and also networks of frugal products and this work accordingly explicates scenarios of ensuing networks. Other than application to various sectors including electric vehicles , a basic example of which is covered in this paper, the proposed adaptation-and-networking framework can also be applied to a growing numbers of sustainable products, which are frugal according to the terminology of this effort and hence prone to premature failure.


Author(s):  
Andrew Ahn ◽  
Thomas S. Welles ◽  
Benjamin Akih-Kumgeh

Abstract Byproducts of fossil fuel combustion contribute to negative changes in the global climate. Specifically, emissions from automobiles are a major source of greenhouse gas pollution. Efforts to minimize these harmful emissions have led to the development and sustained improvement of hybrid drivetrains in automobiles. Despite many advancements, however, hybrid systems still face substantial challenges which bear on their practicality, performance, and competitive disadvantage in view of the low cost of today’s traditional internal combustion engines. These imperfections notwithstanding, hybrid electric vehicles have the potential to play significant roles in the future as cleaner transportation solutions. Actualization of this potential will depend on the ability of hybrid-electric vehicles to minimize their disadvantages while increasing their positive features relative to traditional combustion engines. This research investigates current hybrid electric architectures in automobiles with the aim of suggesting an alternative, more efficient hybrid configuration that utilizes current technology. This is completed by utilizing an iterative design process to compare how various components of existing hybrids can be combined and/or improved to develop a single, efficient and cohesive system that performs comparably to or surpasses existing ones in fuel efficiency and low emissions in all driving conditions. A critical and comparative analysis is provided based on current hybrid-electric vehicle architectures as well as a plausible alternative.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1303 ◽  
Author(s):  
Sara Bellocchi ◽  
Michele Manno ◽  
Michel Noussan ◽  
Michela Vellini

Storage technologies are progressively emerging as a key measure to accommodate high shares of intermittent renewables with a view to guarantee their effective integration towards a profound decarbonisation of existing energy systems. This study aims to evaluate to what extent electricity storage can contribute to a significant renewable penetration by absorbing otherwise-curtailed renewable surplus and quantitatively defines the associated costs. Under a Smart Energy System perspective, a variety of future scenarios are defined for the Italian case based on a progressively increasing renewable and storage capacity feeding an ever-larger electrified demand mostly made up of electric vehicles and, to some extent, heat pumps and power-to-gas/liquid technologies. Results are compared in terms of crucial environmental and techno-economic indicators and discussed with respect to storage operating parameters. The outcome of this analysis reveals the remarkable role of electricity storage in increasing system flexibility and reducing, in the range 24–44%, the renewable capacity required to meet a given sustainability target. Nonetheless, such achievements become feasible only under relatively low investment and operating costs, condition that excludes electrochemical storage solutions and privileges low-cost alternatives that at present, however, exist only at a pilot or demonstration scale.


2015 ◽  
Vol 40 (25) ◽  
pp. 8122-8127 ◽  
Author(s):  
Ian A. Richardson ◽  
Jacob T. Fisher ◽  
Patrick E. Frome ◽  
Ben O. Smith ◽  
Shaotong Guo ◽  
...  

2018 ◽  
Vol 62 ◽  
pp. 362-371 ◽  
Author(s):  
Anand R. Gopal ◽  
Won Young Park ◽  
Maggie Witt ◽  
Amol Phadke

Sign in / Sign up

Export Citation Format

Share Document