scholarly journals Utilization of Waste Glass Micro-particles in Producing Self-Consolidating Concrete Mixtures

2016 ◽  
Vol 10 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Yasser Sharifi ◽  
Iman Afshoon ◽  
Zeinab Firoozjaei ◽  
Amin Momeni

Abstract The successful completion of the present research would be achieved using ground waste glass (GWG) microparticles in self-consolidating concrete (SCC). Here, the influences of GWG microparticles as cementing material on mechanical and durability response properties of SCC are investigated. The aim of this study is to investigate the hardened mechanical properties, percentage of water absorption, free drying shrinkage, unit weight and Alkali Silica Reaction (ASR) of binary blended concrete with partial replacement of cement by 5, 10, 15, 20, 25 and 30 wt% of GWG microparticles. Besides, slump flow, V-funnel, L-box, J-ring, GTM screen stability, visual stability index (VSI), setting time and air content tests were also performed as workability of fresh concrete indicators. The results show that the workability of fresh concrete was increased by increasing the content of GWG microparticles. The results showed that using GWG microparticles up to maximum replacement of 15 % produces concrete with improved hardened strengths. From the results, when the amount of GWG increased there was a gradual decrease in ASR expansion. Results showed that it is possible to successfully produce SCC with GWG as cementing material in terms of workability, durability and hardened properties.

2020 ◽  
Vol 13 (3) ◽  
pp. 613-627
Author(s):  
G. C. GUIGNONE ◽  
G. L. VIEIRA ◽  
R. ZULCÃO ◽  
M. K. DEGEN ◽  
S. H. M. MITTRI ◽  
...  

Abstract The incorporation of waste glass as a partial replacement for cement in concrete can provide an alternative destination for the waste, reduce the consumption of cement (minimizing CO2 emissions and consumption of natural resources), and improve the concrete performance. Thus, this research evaluated the performance of concrete incorporating waste glass sludge (GS), resulting from the process of stoning and polishing of soda-lime flat glass, as a supplementary cementing material. Mechanical strength and durability properties were assessed through compressive strength, alkali-silica reactivity, electrical resistivity and chloride permeability, diffusivity and migration tests. Mixtures containing metakaolin (ME) were also evaluated. The results indicated that the use of the waste ground to an adequate size can replace up to 20% of cement. At this content, it caused a reduction of chloride penetration of over 80%, reduced ASR and conserved compressive strength. The combination of waste with metakaolin replacing 20% of cement also improved all the concrete properties, increasing the compressive strength up to 12% at 28 days.


2020 ◽  
Vol 870 ◽  
pp. 21-28
Author(s):  
Dhifaf Natiq Hamdullah ◽  
Sheelan Mahmoud Hama ◽  
Mohammed Maher Yaseen

This research studied the effect of eggshell powder as a partial replacement of cement on fresh and hardened properties of concrete. The cement was partially replaced with eggshell powder at these percentage 0%, 2.5 %, 5 %, 7.5% and 10%, (by weight of cement). The resulting concrete was compared for impact resistance, energy absorption, load-slip characteristics and ultimate bond strength. setting time (initial and final), slump, density and compressive strength also have been found. The obtaining results indicated the advantage of incorporation of eggshell powder in concrete. The concrete unit weight has not obviously affected by eggshell powder content. The 2.5% eggshell powder give the best results compared to reference mix.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2538 ◽  
Author(s):  
Seong Kim ◽  
Asad Hanif ◽  
Il Jang

This paper assesses the feasibility of using liquid crystal display (LCD) waste glass as a supplementary cementing material in cement mortars. Two different sizes of LCD waste glass powder (LGP) particles were used (5 µm and 12 µm) with two substitution levels with cement in mortar (10% and 20%). The resulting mortars were evaluated for strength, hydration, porosity and durability through various experimental techniques. It was found that LGP particles lead to appreciable strength gain at all ages in comparison with control mortar, especially significant strength gain of 18% was observed at 28-day. This is attributed to the greater gel-space ratio as corroborated by the experimental determination of porosity, which is found less for LGP-incorporated mortars as compared to control cement mortar. The smaller particle size of LGPs not only accelerates the pozzolanic reaction in alkaline cementitious matrix, but also fills the smaller pores, thus reducing porosity and contributing to strength gain. Increased hydration was also elucidated qualitatively by backscattered electron imaging. Due to the increased hydration in LGP-incorporated pastes and mortars, the durability (in terms of chloride ion permeability) has also been found improved. Thus, it is established that 10% (by weight) of cement can be replaced with 12 μm LGP, whereas 20% can be replaced with 5 μm LDP for improved strength and durability. Incorporating LCD waste in mortars and concretes as partial replacement of cement can not only help utilize this potentially hazardous waste, but also significantly reduce the associated carbon dioxide emissions, thus promoting sustainable development.


Author(s):  
Amr S. El-Dieb ◽  
Dima M. Kanaan

Green environment is a challenging concern to accomplish in today’s world. This could be achieved through a beneficial recycling procedure by reusing solid waste materials. Ceramic tiles are widely used in most structures; its production creates waste powder. Concrete that contains solid waste is referred to as “Green” concrete. Using ceramic waste powder (CWP) as an alternative ingredient in concrete will have a positive environmental impact furthermore will help reserve natural resources. In this study CWP will be investigated as supplementary cementing material (SCM) in making concrete. The ceramic waste powder will be used as SCM with different dosages replacing cement. The effect of ceramic waste powder as SCM on the properties of fresh concrete will be investigated such as slump, slump loss and setting time. The properties of hardened concrete will be assessed through compressive strength development, drying shrinkage and durability characteristics was evaluated by rapid chloride permeability test (RCPT) and bulk electrical resistivity. Test results show that CWP can be used as SCM in making concrete. The outcomes of the study shed light on how CWP could be utilized effectively as an alternative ingredient of concrete and the optimum dosage for use which will result in an effective way for using solid waste and protecting the environment.


2019 ◽  
Vol 25 (1) ◽  
pp. 59
Author(s):  
Amalia Amalia ◽  
Muhtarom Riyadi

This paper presents the results of self compacting concrete (SCC) with water cement ratio 0.30 with four variations of tailings, ie 0%, 5%, 10% and 15%. Superplastisizer used is a type Naptha 511P of PT.Karya Naptha Belide. The results showed that (1) The use of tailings as fine aggregate in concrete SCC, has good workability. The fresh concrete that uses tailings, passing ability and filling ability is decrease. The use of tailings up to 15% of eligible properties filling ability and passing ability of SCC, (2) The more tailings used in SCC, setting time of concrete becomes longer, (3) Concrete with tailings as fine aggregate have unit weight is smaller than the concrete with fine aggregate sand, (4) Concrete with tailings has higher compressive strength and modulus of elasticity than concrete without tailings, (5)The use of tailings in concrete can lower tensile strength of concrete, (6)The optimum replacement of tailing found to be 10% in the concrete.


2012 ◽  
Vol 6 (1) ◽  
pp. 239-248 ◽  
Author(s):  
HuiCong Hao ◽  
Kae-Long Lin ◽  
DeYing Wang ◽  
Sao-Jeng Chao ◽  
Hau-Shing Shiu ◽  
...  

This investigation elucidates the mechanical characteristics of geopolymer containing solar panel waste glass. With the SiO2/Na2O molar ratio (S/N = 0.75, 1.0, 1.25, 1.5, 1.75), the percentage of metakaolinite that is replaced by so-lar panel waste glass (0- 40%), and the curing time of 1, 7, and 28 days as the study variables, the porosity, density, setting time, compressive strength, and flexural strength of the geopolymer were evaluated. The morphology of geopolymer was examined using Scanning Electron Microscopy (SEM), and its microstructural properties were examined through Fourier transform infrared spectroscopy (FTIR) analysis. The results demonstrate that the S/N molar ratio significantly influences the mechanical and morphological characteristics of geopolymers. The geopolymer containing solar panel waste glass with an S/N of 1.75 had the greatest compressive strength. The intensity of the peak that represented Si-O-Al bonding of the geopolymer containing solar panel waste glass increased with the S/N. Analysis of the sample morphology revealed that the microstructures of stronger samples were more homogeneous and appeared denser. Furthermore, solar panel waste glass has the potential to partially replace metakaolinite as a geopolymer material, and to exhibit favorable me-chanical characteristics.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012011
Author(s):  
Norfaniza Mokhtar ◽  
Nurul Atikah Jalani

Abstract Waste glass is one of the biggest contributors in waste production in Malaysia which can be used as partial sand replacement in concrete. Silica exists in waste glass components made it becomes a pozzolanic material and suitable to be used in a concrete mixture. The performance of the waste glass as fine aggregate was reviewed by considering the workability of fresh concrete, the strength, and the splitting tensile of hardened concrete. The range of the replacement waste are 0%, 10%, 20% and 30%. The influence of the waste glass on the microstructure of the concrete also have been evaluated. A total of seventeen previous research papers were collected and review based on the parameters selected. The results shows that replacement of waste glass in concrete give a positive impact for all selected parameters with 20% replacement represent as an optimal percentage replacement. The microstructure of the waste glass concrete resulting that more voids created after 20% replacement of waste glass which affects the compressive strength and split tensile strength of the concrete thus make the optimum replacement percentage is 20% replacement.


2019 ◽  
pp. 189-197
Author(s):  
Ikumapayi C. M. ◽  
Akingbonmire S. L. ◽  
Oni O.

Concrete is prone to cracking and one of the major causes of cracking is drying shrinkage of the hardened concrete. This research work was carried out to study the influence of partial replacement of some selected pozzolans on the drying shrinkage of concrete. Four pozzolans used in this study, were made to replace cement at various percentages resulting in various concrete mixes. Setting time test was conducted for the various cement mixes using Vicat’s apparatus and drying shrinkage test was done for the concrete test specimens. The results of the setting time indicate that partial replacement of pozzolans with ordinary Portland cement increases both the initial and final setting time of cement as the percentage replacement increases. Similarly, drying shrinkage results show that concrete made with Groundnut Shell Ash (GSA) and Locust Bean Pod Ash (LBA) at 12% replacement will have a stable and better shrinkage resistance than the control at both 56 days and 90 days. Meanwhile, the control concrete gives a better drying shrinkage at 28 days curing. In conclusion, the results show that pozzolanas [Bamboo Leaves Ash (BLA), Locust Bean Pod Ash (LBA), Sugarcane Bagasse Ash (SBA) and Groundnut Shell Ash (GSA)] can successfully replace cement up to 12% without necessarily affecting the shrinkage ability of the produced concrete. It also shows that Groundnut Shell Ash (GSA), Locust Bean Pod Ash (LBA) and Bamboo Leaves Ash (BLA) are more resistance to drying shrinkage than the control.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2073
Author(s):  
Qiubai Deng ◽  
Zhenyu Lai ◽  
Rui Xiao ◽  
Jie Wu ◽  
Mengliang Liu ◽  
...  

Waste glass is a bulk solid waste, and its utilization is of great consequence for environmental protection; the application of waste glass to magnesium phosphate cement can also play a prominent role in its recycling. The purpose of this study is to evaluate the effect of glass powder (GP) on the mechanical and working properties of magnesium potassium phosphate cement (MKPC). Moreover, a 40mm × 40mm × 40mm mold was used in this experiment, the workability, setting time, strength, hydration heat release, porosity, and microstructure of the specimens were evaluated. The results indicated that the addition of glass powder prolonged the setting time of MKPC, reduced the workability of the matrix, and effectively lowered the hydration heat of the MKPC. Compared to an M/P ratio (MgO/KH2PO4 mass ratio) of 1:1, the workability of the MKPC with M/P ratios of 2:1 and 3:1 was reduced by 1% and 2.1%, respectively, and the peak hydration temperatures were reduced by 0.5% and 14.6%, respectively. The compressive strength of MKPC increased with an increase in the glass powder content at the M/P ratio of 1:1, and the addition of glass powder reduced the porosity of the matrix, effectively increased the yield of struvite-K, and affected the morphology of the hydration products. With an increase in the M/P ratio, the struvite-K content decreased, many tiny pores were more prevalent on the surface of the matrix, and the bonding integrity between the MKPC was weakened, thereby reducing the compressive strength of the matrix. At less than 40 wt.% glass powder content, the performance of MKPC improved at an M/P ratio of 1:1. In general, the addition of glass powders improved the mechanical properties of MKPC and reduced the heat of hydration.


Sign in / Sign up

Export Citation Format

Share Document