Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line

Author(s):  
Hajra Ashraf ◽  
Bisma Meer ◽  
Junaid Iqbal ◽  
Joham Sarfraz Ali ◽  
Anisa Andleeb ◽  
...  
Author(s):  
Hams H. H. Alfattli ◽  
Ghufran Zuhair Jiber ◽  
Ghaidaa Gatea Abbass

This study which designed to evaluate the inhibitory effect of Ethanolic extract of (Quercusrobur) and Zinc oxide nanoparticles on the growth of one genus of enterobacteriacae (Salmonella). In vitro. For this purpose graduate concentrates for plant extract (50, 100, 200, 400 )mg/ml which prepared and compared with Zinc oxide nanoparticles of different concentration (2, 1, 0.5, 0.25) μg/ml,and examined. The result showed that the studied medicinal plant has antibacterial activity against this bacteria which used. The result showed that the plant has good activity in decrease the growth of this bacteria. The results of the study also showed that the nano-ZnO has very effective antibacterial action against the studied bacteria which was Salmonella,nanoparticles concentrations lead to increasing in the inhibition zones of tested bacterial growth. We also study the effect of three antibiotics Lomefloxacin (LOM), Ciprofloxacin (SIP) and Rifampin (RA) and the result showed,in a comparison within the tested bacteria,Salmonella had a significant inhibition increase in Lomefloxacin ; the ciprofloxacin showed effect on tested bacteria. However,Rifampin does not show any effect on tested bacteria.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


2021 ◽  
Vol 8 (8) ◽  
pp. 4483-4496
Author(s):  
Aliaa M. Radwan ◽  
Eman F. Aboelfetoh ◽  
Tetsunari Kimura ◽  
Tarek M. Mohamed ◽  
Mai M. El-Keiy

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4062
Author(s):  
Till Jasper Meyer ◽  
Agmal Scherzad ◽  
Helena Moratin ◽  
Thomas Eckert Gehrke ◽  
Julian Killisperger ◽  
...  

Radioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP. The dose-dependent cytotoxicity of ZnO-NP20 nm and ZnO-NP100 nm was investigated in FaDu and primary fibroblasts (FB) by an MTT assay. The clonogenic survival assay was used to evaluate the effects of ZnO-NP alone and in combination with irradiation on FB and FaDu. A formamidopyrimidine-DNA glycosylase (FPG)-modified single-cell microgel electrophoresis (comet) assay was applied to detect oxidative DNA damage in FB as a function of ZnO-NP and irradiation exposure. A significantly increased cytotoxicity after FaDu exposure to ZnO-NP20 nm or ZnO-NP100 nm was observed in a concentration of 10 µg/mL or 1 µg/mL respectively in 30 µg/mL of ZnO-NP20 nm or 20 µg/mL of ZnO-NP100 nm in FB. The addition of 1, 5, or 10 µg/mL ZnO-NP20 nm or ZnO-NP100 nm significantly reduced the clonogenic survival of FaDu after irradiation. The sub-cytotoxic dosage of ZnO-NP100 nm increased the oxidative DNA damage compared to the irradiated control. This effect was not significant for ZnO-NP20 nm. ZnO-NP showed radiosensitizing properties in the sub-cytotoxic dosage. At least for the ZnO-NP100 nm, an increased level of oxidative stress is a possible mechanism of the radiosensitizing effect.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3929
Author(s):  
Dyhia Amrane ◽  
Armand Gellis ◽  
Sébastien Hutter ◽  
Marion Prieri ◽  
Pierre Verhaeghe ◽  
...  

From three previously identified antiplasmodial hit compounds (A–C) and inactive series (D), all based on a 2-trichloromethylquinazoline scaffold, we conducted a structure-activity relationship (SAR) study at position four of the quinazoline ring by synthesizing 42 novel derivatives bearing either a carboxamido- or an alkoxy-group, to identify antiplasmodial compounds and to enrich the knowledge about the 2-trichloromethylquinazoline antiplasmodial pharmacophore. All compounds were evaluated in vitro for their cytotoxicity towards the HepG2 cell line and their activity against the multiresistant K1 P. falciparum strain, using doxorubicin, chloroquine and doxycycline as reference drugs. Four hit-compounds (EC50 K1 P. falciparum ≤ 2 µM and SI ≥ 20) were identified among 4-carboxamido derivatives (2, 9, 16, and 24) and two among 4-alkoxy derivatives (41 and 44). Regarding the two most potent molecules (16 and 41), five derivatives without a 2-CCl3 group were prepared, evaluated, and appeared totally inactive (EC50 > 50 µM), showing that the 2-trichloromethyl group was mandatory for the antiplasmodial activity.


2016 ◽  
Vol 71 (3) ◽  
pp. 653-660 ◽  
Author(s):  
Lijie Zhu ◽  
Minghan Zhang ◽  
Xiuying Liu ◽  
He Liu ◽  
Yutang He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document