scholarly journals Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators

2022 ◽  
Vol 11 (2) ◽  
pp. 331-344
Author(s):  
Xiangxin Du ◽  
Zheng Zhou ◽  
Zhao Zhang ◽  
Liqin Yao ◽  
Qilong Zhang ◽  
...  

AbstractPiezoelectric nanogenerators (PENGs) that can harvest mechanical energy from ambient environment have broad prospects for multi-functional applications. Here, multi-layered piezoelectric composites with a porous structure based on highly oriented Pb(Zr0.52Ti0.48)O3/PVDF (PZT/PVDF) electrospinning fibers are prepared via a laminating method to construct high-performance PENGs. PZT particles as piezoelectric reinforcing phases are embedded in PVDF fibers and facilitate the formation of polar β phase in PVDF. The multi-layered, porous structure effectively promotes the overall polarization and surface bound charge density, resulting in a highly efficient electromechanical conversion. The PENG based on 10 wt% PZT/PVDF composite fibers with a 220 µm film thickness outputs an optimal voltage of 62.0 V and a power of 136.9 µW, which are 3.4 and 6.5 times those of 10 wt% PZT/PVDF casting film-based PENG, respectively. Importantly, the PENG shows a high sensitivity of 12.4 V·N−1, presenting a significant advantage in comparison to PENGs with other porous structures. In addition, the composites show excellent flexibility with a Young’s modulus of 227.2 MPa and an elongation of 262.3%. This study shows a great potential application of piezoelectric fiber composites in flexible energy harvesting devices.

2021 ◽  
Author(s):  
Xiangxin Du ◽  
Zheng Zhou ◽  
Zhao Zhang ◽  
Liqin Yao ◽  
Qilong Zhang ◽  
...  

Abstract Piezoelectric nanogenerators (PENGs) that can harvest mechanical energy from ambient environment have broad prospects for multi-functional applications. Here, multi-layered piezoelectric composites with a porous structure based on highly oriented PZT/PVDF electrospinning fibers are prepared via a laminating method to construct high-performance PENGs. PZT particles as piezoelectric reinforcing phases are embedded in PVDF fibers and facilitate the formation of polar β phase in PVDF. The multi-layered, porous structure effectively promotes the overall polarization and surface bound charge density, resulting in highly efficient electromechanical conversion. The PENG based on 10 wt.% PZT/PVDF composite fibers with a 220 µm film thickness output an optimal voltage of 62.0 V and a power of 136.9 μW, which is 3.4 and 6.5 times the voltage and power of 10wt.% PZT/PVDF casting film-based PENG, respectively. Importantly, the PENG shows a high sensitivity of 12.4 VN-1, presenting a significant advantage in comparison to PENGs with other porous structures. In addition, the composites show excellent flexibility with a Young’s modulus of 227.2 MPa and an elongation of 262.3%. This work shows great potential application of piezoelectric fiber composites in flexible energy harvesting devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1908
Author(s):  
Hai Li ◽  
Sooman Lim

Self-polarized piezoelectric devices have attracted significant interest owing to their fabrication processes with low energy consumption. Herein, novel poling-free piezoelectric nanogenerators (PENGs) based on self-polarized polyvinylidene difluoride (PVDF) induced by the incorporation of different surface-modified barium titanate nanoparticles (BTO NPs) were prepared via a fully printing process. To reveal the effect of intermolecular interactions between PVDF and NP surface groups, BTO NPs were modified with hydrophilic polydopamine (PDA) and hydrophobic 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) to yield PDA-BTO and PFD-BTO, respectively. This study demonstrates that the stronger hydrogen bonding interactions existed in PFD-BTO/PVDF composite film comparative to the PDA-BTO/PVDF composite film induced the higher β-phase formation (90%), which was evidenced by the XRD, FTIR and DSC results, as well as led to a better dispersion of NPs and improved mechanical properties of composite films. Consequently, PFD-BTO/PVDF-based PENGs without electric poling exhibited a significantly improved output voltage of 5.9 V and power density of 102 μW cm−3, which was 1.8 and 2.9 times higher than that of PDA-BTO/PVDF-based PENGs, respectively. This study provides a promising approach for advancing the search for high-performance, self-polarized PENGs in next-generation electric and electronic industries.


Author(s):  
Yves Vigier ◽  
Amen Agbossou ◽  
Claude Richard

The possibility of dissipating mechanical energy with piezoelectric fiber composites (PFC) is investigated. The techniques for manufacturing an active beam with integrated (PFC) are presented and applied to a cantilevered beam experiment. We evaluated experimentally the performances of the active beam in passive energy dissipation. Three vibration cases were analysed: electrodes of the PFCs are (i) in open circuit, (ii) short circuit and (iii) shunted with electrical impedance designed to dissipate the electrical energy, which has been converted from the beam mechanical energy by the PFCs. Then we presented numerical models to analyze the vibration of active beams connect to electrical impedance. The proposed models point out with an accurate order of magnitude the change in vibration amplitude of the analysed beam. Hence we validate experimentally and numerically the concept of vibration control with PFCs and point out some new contributions of PFCs in active or passive damping.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2511 ◽  
Author(s):  
Camille Justeau ◽  
Taoufik Slimani Tlemcani ◽  
Guylaine Poulin-Vittrant ◽  
Kevin Nadaud ◽  
Daniel Alquier

In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (VOC) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 666
Author(s):  
Lanxin Yang ◽  
Zhihao Ma ◽  
Yun Tian ◽  
Bo Meng ◽  
Zhengchun Peng

With the rapid development of the internet of things (IoT), sustainable self-powered wireless sensory systems and diverse wearable and implantable electronic devices have surged recently. Under such an opportunity, nanogenerators, which can convert continuous mechanical energy into usable electricity, have been regarded as one of the critical technologies for self-powered systems, based on the high sensitivity, flexibility, and biocompatibility of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs). In this review, we have thoroughly analyzed the materials and structures of wearable and implantable PENGs and TENGs, aiming to make clear how to tailor a self-power system into specific applications. The advantages in TENG and PENG are taken to effectuate wearable and implantable human-oriented applications, such as self-charging power packages, physiological and kinematic monitoring, in vivo and in vitro healing, and electrical stimulation. This review comprehensively elucidates the recent advances and future outlook regarding the human body’s self-powered systems.


2018 ◽  
Vol 6 (30) ◽  
pp. 14546-14552 ◽  
Author(s):  
Yong Zhang ◽  
Chang Kyu Jeong ◽  
Tiannan Yang ◽  
Huajun Sun ◽  
Long-Qing Chen ◽  
...  

A bioinspired architecture of piezoceramics is developed for new composite structures overcoming the major limitations of the current piezoelectric polymer composites.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3252
Author(s):  
Yijing Jiang ◽  
Yongju Deng ◽  
Hongyan Qi

Flexible piezoelectric nanogenerators have attracted great attention due to their ability to convert ambient mechanical energy into electrical energy for low-power wearable electronic devices. Controlling the microstructure of the flexible piezoelectric materials is a potential strategy to enhance the electrical outputs of the piezoelectric nanogenerator. Three types of flexible polyvinylidene fluoride (PVDF) piezoelectric nanogenerator were fabricated based on well-aligned nanofibers, random oriented nanofibers and thick films. The electrical output performance of PVDF nanogenerators is systematically investigated by the influence of microstructures. The aligned nanofiber arrays exhibit highly consistent orientation, uniform diameter, and a smooth surface, which possesses the highest fraction of the polar crystalline β phase compared with the random-oriented nanofibers and thick films. The highly aligned structure and the large fraction of the polar β phase enhanced the output performance of the well-aligned nanofiber nanogenerator. The highest output voltage of 14 V and a short-circuit current of 1.22 µA were achieved under tapping mode of 10 N at 2.5 Hz, showing the potential application in flexible electronic devices. These new results shed some light on the design of the flexible piezoelectric polymer-based nanogenerators.


2021 ◽  
Vol 30 (9) ◽  
pp. 11-15
Author(s):  
Yoon-Hwae HWANG

Energy harvesting is the process by which energy can be obtained from external sources and used for wearable electronics and wireless sensor networks. Piezoelectric nanogenerators are energy harvesting devices that convert mechanical energy into electric energy by using nanostructured materials. This article summarizes work to date on piezoelectric nanogenerators, starting with the basic theory of piezo- and flexo-electricity and moving through reports on nanogenerators using nanostructures, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power sources or strain sensors of highly integrated nanodevices. Further improvements in nanogenerators holds promise for the development of self-powered implantable and wearable electronics.


Sign in / Sign up

Export Citation Format

Share Document