Effect of C/C composite surface pretreatment on properties of brazed joint

Author(s):  
Shengnan Li ◽  
Quanbin Lu ◽  
Dong Du ◽  
Yinyin Pei ◽  
Lei Zhang ◽  
...  
2021 ◽  
Vol 60 (1) ◽  
pp. 92-111
Author(s):  
Shengnan Li ◽  
Dong Du ◽  
Lei Zhang ◽  
Xiaoguo Song ◽  
Yongguang Zheng ◽  
...  

Abstract It is needed to join C/C composite to other materials since its individual use is limited. Brazing is a method to join C/C composite that has been studied most, maturest and most widely used in recent decades. The quality of a brazed joint is largely determined by the intermediate layer material. It is significant to choose filler materials reasonably. C/C composite is difficult to be wetted by common brazing filler materials. Moreover, there is a large difference in the coefficient of thermal expansion between C/C composite and metals. At present, there is no brazing filler alloy exclusively recommended for commercial C/C composites and metal brazing. Usually, active elements are added into filler metals to improve the wettability of them on C/C composite surface. The existing research includes Al-based, Ag-based, Cu-based, Ti-based, Ni-based brazing filler metals, and so on. In addition, various particle reinforced composite filler materials and stress buffer metal interlayer added composite filler materials have been studied for brazing C/C composite. The summarization of the overview on the application of intermediate filler metals is made in this paper. The basic reference basis is provided for the subsequent brazing filler metals development and joint performance improvement for C/C composite brazing.


2020 ◽  
Vol 40 (3) ◽  
pp. 90-95
Author(s):  
Zeng Gao ◽  
Jianguang Feng ◽  
Xingkong Tao ◽  
Fengsong Ma ◽  
Jitai Niu

In this paper, the effect of different surface pretreatment method on properties of vacuum brazed joint of AlSi50 alloy was investigated. The surface pretreatment methods of specimen before brazing include sanding, NaOH corrosion, HCl corrosion, H2SO4 corrosion and nickel plating. The experimental results indicate that the width of brazing joint varies with different surface pretreatment methods. The joint with sanding pretreatment, has the largest brazing seam width of 20 μm. Meanwhile, joint with H2SO4 corrosion has the narrowest brazing seam width. The brazing filler metal can wet and spread on different pretreated specimen very well. Spectrum analysis indicates that nickel-plate on AlSi50 surface, can interact with brazing filler metal, which increases mechanical property of brazing joint. For brazing of AlSi50 alloy, the optimal pretreatment method is nickel plating. After nickel plating pretreatment, brazing joint has the maximum shear strength 82.05 MPa by using brazing filler metal Al52-Cu33-Mg12-Ni3 and following technological parameters: brazing temperature 580 ℃, soaking time 30 min and pressure 3 MPa.


2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


2009 ◽  
Vol 24 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Jin-Xin YANG ◽  
Xiu-Fang WEN ◽  
Pi-Hui PI ◽  
Da-Feng ZHENG ◽  
Jiang CHENG ◽  
...  

2010 ◽  
Vol 22 (6) ◽  
pp. 907-913 ◽  
Author(s):  
Kai Liu ◽  
Zhengxing Sun ◽  
Yaoye Zhang

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 930
Author(s):  
Juan Jesús Alba-Galvín ◽  
Leandro González-Rovira ◽  
Francisco Javier Botana ◽  
Maria Lekka ◽  
Francesco Andreatta ◽  
...  

The selection of appropriate surface pretreatments is one of the pending issues for the industrial application of cerium-based chemical conversion coatings (CeCC) as an alternative for toxic chromate conversion coating (CrCC). A two-step surface pretreatment based on commercial products has been successfully used here to obtain CeCC on AA2024-T3 and AA7075-T6. Specimens processed for 1 to 15 min in solutions containing CeCl3 and H2O2 have been studied by scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), glow discharge optical emission spectroscopy (GDOES), potentiodynamic linear polarization (LP), electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. SEM-EDX showed that CeCC was firstly observed as deposits, followed by a general coverage of the surface with the formation of cracks where the coating was getting thicker. GDOES confirmed an increase of the CeCC thickness as the deposition proceed, the formation of CeCC over 7075 being faster than over 2024. There was a Ce-rich layer in both alloys and an aluminum oxide/hydroxide layer on 7075 between the upper Ce-rich layer and the aluminum matrix. According to LP and EIS, CeCC in all samples offered cathodic protection and comparable degradation in chloride-containing media. Finally, the NSS test corroborated the anti-corrosion properties of the CeCC obtained after the commercial pretreatments employed.


2018 ◽  
Vol 115 (14) ◽  
pp. 3698-3703 ◽  
Author(s):  
Xiaofan Jin ◽  
Ingmar H. Riedel-Kruse

Bacterial biofilms represent a promising opportunity for engineering of microbial communities. However, our ability to control spatial structure in biofilms remains limited. Here we engineerEscherichia coliwith a light-activated transcriptional promoter (pDawn) to optically regulate expression of an adhesin gene (Ag43). When illuminated with patterned blue light, long-term viable biofilms with spatial resolution down to 25 μm can be formed on a variety of substrates and inside enclosed culture chambers without the need for surface pretreatment. A biophysical model suggests that the patterning mechanism involves stimulation of transiently surface-adsorbed cells, lending evidence to a previously proposed role of adhesin expression during natural biofilm maturation. Overall, this tool—termed “Biofilm Lithography”—has distinct advantages over existing cell-depositing/patterning methods and provides the ability to grow structured biofilms, with applications toward an improved understanding of natural biofilm communities, as well as the engineering of living biomaterials and bottom–up approaches to microbial consortia design.


2021 ◽  
Vol 45 (9) ◽  
pp. 4481-4495
Author(s):  
Sahar Mansour ◽  
Rym Akkari ◽  
Erika Soto ◽  
Semy Ben Chaabene ◽  
Noelia Mota ◽  
...  

The photodeposition of platinum particles on the BiVO4/TiO2 composite surface promotes the H2 production by reducing H+ species.


2021 ◽  
Vol 409 ◽  
pp. 126876
Author(s):  
Zhi Chen ◽  
Zhaojun Yan ◽  
Hongbing Zhou ◽  
Fenglin Han ◽  
Linhe Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document