Low Energy Availability in Exercising Women: Historical Perspectives and Future Directions

2016 ◽  
Vol 47 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Joanne Slater ◽  
Rachel Brown ◽  
Rebecca McLay-Cooke ◽  
Katherine Black
1998 ◽  
Vol 84 (1) ◽  
pp. 37-46 ◽  
Author(s):  
A. B. Loucks ◽  
M. Verdun ◽  
E. M. Heath ◽  

Loucks, A. B., M. Verdun, and E. M. Heath. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J. Appl. Physiol.84(1): 37–46, 1998.—We tested two hypotheses about the disruption of luteinizing hormone (LH) pulsatility in exercising women by assaying LH in blood samples drawn at 10-min intervals over 24 h from nine young, habitually sedentary, regularly menstruating women on days 8, 9, or 10 of two menstrual cycles after 4 days of intense exercise [E = 30 kcal ⋅ kg lean body mass (LBM)−1 ⋅ day−1at 70% of aerobic capacity]. To test the hypothesis that LH pulsatility is disrupted by low energy availability, we controlled the subjects’ dietary energy intakes (I) to set their energy availabilities (A = I − E) at 45 and 10 kcal ⋅ kg LBM−1 ⋅ day−1during the two trials. To test the hypothesis that LH pulsatility is disrupted by the stress of exercise, we compared the resulting LH pulsatilities to those previously reported in women with similar controlled energy availability who had not exercised. In the exercising women, low energy availability reduced LH pulse frequency by 10% ( P < 0.01) during the waking hours and increased LH pulse amplitude by 36% ( P = 0.05) during waking and sleeping hours, but this reduction in LH pulse frequency was blunted by 60% ( P = 0.03) compared with that in the previously studied nonexercising women whose low energy availability was caused by dietary restriction. The stress of exercise neither reduced LH pulse frequency nor increased LH pulse amplitude (all P > 0.4). During exercise, the proportion of energy derived from carbohydrate oxidation was reduced from 73% while A = 45 kcal ⋅ kg LBM−1 ⋅ day−1to 49% while A = 10 kcal ⋅ kg LBM−1 ⋅day−1( P < 0.0001). These results contradict the hypothesis that LH pulsatility is disrupted by exercise stress and suggest that LH pulsatility in women depends on energy availability.


2017 ◽  
Vol 6 (1) ◽  
pp. 78-90 ◽  
Author(s):  
Nancy I. Williams ◽  
Clara V. Etter ◽  
Jay L. Lieberman

An understanding of the health consequences of abnormal menstrual function is an important consideration for all exercising women. Menstrual disturbances in exercising women are quite common and range in severity from mild to severe and are often associated with bone loss, low energy availability, stress fractures, eating disorders, and poor performance. The key factor that causes menstrual disturbances is low energy availability created by an imbalance of energy intake and energy expenditure that leads to an energy deficit and compensatory metabolic adaptations to maintain energy balance. Practical guidelines for preventing and treating amenorrhea in exercising women include evidence-based dietary practices designed to achieve optimal energy availability. Other factors such as gynecological age, genetics, and one’s susceptibility to psychological stress can modify an individual’s susceptibility to menstrual disturbances caused by low energy availability. Future research should explore the magnitude of these effects in an effort to move toward more individualized prevention and treatment approaches.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2083
Author(s):  
María Villa ◽  
José G. Villa-Vicente ◽  
Jesus Seco-Calvo ◽  
Juan Mielgo-Ayuso ◽  
Pilar S. Collado

The aim of this study was to analyze dietary intake and body composition in a group of elite-level competitive rhythmic gymnasts from Spain. We undertook body composition and nutritional analysis of 30 elite gymnasts, divided into two groups by age: pre-teen (9–12 years) (n = 17) and teen (13–18 years) (n = 13). Measures of height, weight, and bioimpedance were used to calculate body mass index and percent body fat. Energy and nutrient intakes were assessed based on 7-day food records. The two groups had similar percentages of total body fat (pre-teen: 13.99 ± 3.83% vs. teen: 14.33 ± 5.57%; p > 0.05). The energy availability values for pre-teens were above the recommended values (>40 kcal/FFM/day) 69.38 ± 14.47 kcal/FFM/day, while those for the teens were much lower (34.7 ± 7.5 kcal/FFM/day). The distribution of the daily energy intake across the macronutrients indicates that both groups ingested less than the recommended level of carbohydrates and more than the recommended level of fat. Very low intakes of calcium and vitamin D among other micronutrients were also noted. The main finding is that teenage gymnasts do not consume as much energy as they need each day, which explains their weight and development. Moreover, they are at a high risk of developing low energy availability that could negatively impact their performance and future health.


2018 ◽  
Vol 53 (10) ◽  
pp. 628-633 ◽  
Author(s):  
Kathryn E Ackerman ◽  
Bryan Holtzman ◽  
Katherine M Cooper ◽  
Erin F Flynn ◽  
Georgie Bruinvels ◽  
...  

Low energy availability (EA) is suspected to be the underlying cause of both the Female Athlete Triad and the more recently defined syndrome, Relative Energy Deficiency in Sport (RED-S). The International Olympic Committee (IOC) defined RED-S as a syndrome of health and performance impairments resulting from an energy deficit. While the importance of adequate EA is generally accepted, few studies have attempted to understand whether low EA is associated with the health and performance consequences posited by the IOC.ObjectiveThe purpose of this cross-sectional study was to examine the association of low EA with RED-S health and performance consequences in a large clinical population of female athletes.MethodsOne thousand female athletes (15–30 years) completed an online questionnaire and were classified as having low or adequate EA. The associations between low EA and the health and performance factors listed in the RED-S models were evaluated using chi-squared test and the odds ratios were evaluated using binomial logistic regression (p<0.05).ResultsAthletes with low EA were more likely to be classified as having increased risk of menstrual dysfunction, poor bone health, metabolic issues, haematological detriments, psychological disorders, cardiovascular impairment and gastrointestinal dysfunction than those with adequate EA. Performance variables associated with low EA included decreased training response, impaired judgement, decreased coordination, decreased concentration, irritability, depression and decreased endurance performance.ConclusionThese findings demonstrate that low EA measured using self-report questionnaires is strongly associated with many health and performance consequences proposed by the RED-S models.


Author(s):  
Daniel Paduan Joaquim ◽  
Claudia Ridel Juzwiak ◽  
Ciro Winckler

One of the greatest challenges when working with athletes is to achieve the energy demands for physiological processes and exercise expenditure. The aim of this study was to assess the energy availability (EA) of Paralympic track and field athletes (sprinters). Seventeen athletes (9 male and 8 female) with visual impairment (VI, n=10), cerebral palsy (CP, n=4) and limb deficiency (LD, n=3) were assessed for energy intake (EI) (4-day food photographic record), energy expenditure with exercise (EEex) (motion sensor), and body composition (skinfolds method). Energy availability was estimated using the equation: EA = (EIkcal - EEexkcal) / fat-free mass (FFM) / day, and values ≤ 30kcal/kgFFM/day were considered as low energy availability (LEA). EEex varied from 130 to 477kcal/h and athletes trained in average for 3.2 hours per day. Mean EA for VI, LD and CP were 36 (2.19), 37 (1.90) and 38 (3.38) kcal/kgFFM/day, respectively. Most (82.3%) participants presented EA below ≥ 45kcal/kgFFM/day, throughout the days, which are the recommended values for athletes without disability. Athletes should be encouraged to consume adequate EA to avoid consequences related to low energy availability. There is need of further research to identify cut-off values adequate for this population.


Sign in / Sign up

Export Citation Format

Share Document