scholarly journals Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations

2019 ◽  
Vol 49 (S2) ◽  
pp. 185-198 ◽  
Author(s):  
Charles R. Pedlar ◽  
John Newell ◽  
Nathan A. Lewis

Abstract Blood test data were traditionally confined to the clinic for diagnostic purposes, but are now becoming more routinely used in many professional and elite high-performance settings as a physiological profiling and monitoring tool. A wealth of information based on robust research evidence can be gleaned from blood tests, including: the identification of iron, vitamin or energy deficiency; the identification of oxidative stress and inflammation; and the status of red blood cell populations. Serial blood test data can be used to monitor athletes and make inferences about the efficacy of training interventions, nutritional strategies or indeed the capacity to tolerate training load. Via a profiling and monitoring approach, blood biomarker measurement combined with contextual data has the potential to help athletes avoid injury and illness via adjustments to diet, training load and recovery strategies. Since wide inter-individual variability exists in many biomarkers, clinical population-based reference data can be of limited value in athletes, and statistical methods for longitudinal data are required to identify meaningful changes within an athlete. Data quality is often compromised by poor pre-analytic controls in sport settings. The biotechnology industry is rapidly evolving, providing new technologies and methods, some of which may be well suited to athlete applications in the future. This review provides current perspectives, limitations and recommendations for sports science and sports medicine practitioners using blood profiling and monitoring for nutrition and performance purposes.

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 514
Author(s):  
Javier Jorge-Vázquez ◽  
Mª Peana Chivite-Cebolla ◽  
Francisco Salinas-Ramos

The digitization of the agri-food sector is a strategic priority in the political agenda of European institutions. The opportunity to improve the competitiveness and efficiency of the sector offered by new technologies comes together with its potential to face new economic and environmental challenges. This research aims to analyze the level of digitalization of the European agri-food cooperative sector from the construction of a composite synthetic index. Such an index is to be based on a diverse set of variables related to electronic commerce and the services offered through the internet. It also evaluates how European cooperatives influence the degree of technological adoption depending on their size or the wealth of the country where they carry out their activity. The empirical analytical method is thus used, through the analysis of frequencies and correlations. The results obtained reveal the existence of a suboptimal and heterogeneous degree of digitization of European agri-food cooperatives, clearly conditioned by their size and the wealth of the country where they operate. In this situation, it is recommended to promote public policies that guarantee high-performance digital connectivity, an improvement in training in digital skills and the promotion of cooperative integration processes.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


2021 ◽  
Vol 2 (1) ◽  
pp. 46-62
Author(s):  
Santiago Iglesias-Baniela ◽  
Juan Vinagre-Ríos ◽  
José M. Pérez-Canosa

It is a well-known fact that the 1989 Exxon Valdez disaster caused the escort towing of laden tankers in many coastal areas of the world to become compulsory. In order to implement a new type of escort towing, specially designed to be employed in very adverse weather conditions, considerable changes in the hull form of escort tugs had to be made to improve their stability and performance. Since traditional winch and ropes technologies were only effective in calm waters, tugs had to be fitted with new devices. These improvements allowed the remodeled tugs to counterbalance the strong forces generated by the maneuvers in open waters. The aim of this paper is to perform a comprehensive literature review of the new high-performance automatic dynamic winches. Furthermore, a thorough analysis of the best available technologies regarding towline, essential to properly exploit the new winches, will be carried out. Through this review, the way in which the escort towing industry has faced this technological challenge is shown.


2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


Oncology ◽  
2021 ◽  
Vol 99 (5) ◽  
pp. 318-326
Author(s):  
Yutaro Kamei ◽  
Tetsuro Takayama ◽  
Toshiyuki Suzuki ◽  
Kenichi Furihata ◽  
Megumi Otsuki ◽  
...  

Background: Survival rate may be predicted by tumor-node-metastasis staging systems in colon cancer. In clinical practice, about 20 to 30 clinicopathological factors and blood test data have been used. Various predictive factors for recurrence have been advocated; however, the interactions are complex and remain to be established. We used artificial intelligence (AI) to examine predictive factors related to recurrence. Methods: The study group comprised 217 patients who underwent curative surgery for stage III colon cancer. Using a self-organizing map (SOM), an AI-based method, patients with only 23 clinicopathological factors, patients with 23 clinicopathological factors and 34 of preoperative blood test data (pre-data), and those with 23 clinicopathological factors and 31 of postoperative blood test data (post-data) were classified into several clusters with various rates of recurrence. Results: When only clinicopathological factors were used, the percentage of T4b disease, the percentage of N2 disease, and the number of metastatic lymph nodes were significantly higher in a cluster with a higher rate of recurrence. When clinicopathological factors and pre-data were used, three described pathological factors and the serum C-reactive protein (CRP) levels were significantly higher and the serum total protein (TP) levels, serum albumin levels, and the percentage of lymphocytes were significantly lower in a cluster with a higher rate of recurrence. When clinicopathological factors and post-data were used, three described pathological factors, serum CRP levels, and serum carcinoembryonic antigen levels were significantly higher and serum TP levels, serum albumin levels, and the percentage of lymphocytes were significantly lower in a cluster with a higher rate of recurrence. Conclusions: This AI-based analysis extracted several risk factors for recurrence from more than 50 pathological and blood test factors before and after surgery separately. This analysis may predict the risk of recurrence of a new patient by confirming which clusters this patient belongs to.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Dmitriy Konovalov ◽  
Anatoly Vershinin ◽  
Konstantin Zingerman ◽  
Vladimir Levin

Modern high-performance computing systems allow us to explore and implement new technologies and mathematical modeling algorithms into industrial software systems of engineering analysis. For a long time the finite element method (FEM) was considered as the basic approach to mathematical simulation of elasticity theory problems; it provided the problems solution within an engineering error. However, modern high-tech equipment allows us to implement design solutions with a high enough accuracy, which requires more sophisticated approaches within the mathematical simulation of elasticity problems in industrial packages of engineering analysis. One of such approaches is the spectral element method (SEM). The implementation of SEM in a CAE system for the solution of elasticity problems is considered. An important feature of the proposed variant of SEM implementation is a support of hybrid curvilinear meshes. The main advantages of SEM over the FEM are discussed. The shape functions for different classes of spectral elements are written. Some results of computations are given for model problems that have analytical solutions. The results show the better accuracy of SEM in comparison with FEM for the same meshes.


Author(s):  
Saifur Rahaman ◽  
Xiangtao Li ◽  
Jun Yu ◽  
Ka-Chun Wong

Abstract Motivation The early detection of cancer through accessible blood tests can foster early patient interventions. Although there are developments in cancer detection from cell-free DNA (cfDNA), its accuracy remains speculative. Given its central importance with broad impacts, we aspire to address the challenge. Methods A bagging Ensemble Meta Classifier (CancerEMC) is proposed for early cancer detection based on circulating protein biomarkers and mutations in cfDNA from the blood. CancerEMC is generally designed for both binary cancer detection and multi-class cancer type localization. It can address the class imbalance problem in multi-analyte blood test data based on robust oversampling and adaptive synthesis techniques. Results Based on the clinical blood test data, we observe that the proposed CancerEMC has outperformed other algorithms and state-of-the-arts studies (including CancerSEEK published in Science, 2018) for cancer detection. The results reveal that our proposed method (i.e., CancerEMC) can achieve the best performance result for both binary cancer classification with 99.1748% accuracy (AUC = 0.999) and localized multiple cancer detection with 74.1214% accuracy (AUC = 0.938). For addressing the data imbalance issue with oversampling techniques, the accuracy can be increased to 91.4966% (AUC = 0.992), where the state-of-the-art method can only be estimated at 69.64% (AUC = 0.921). Similar results can also be observed on independent and isolated testing data. Availability https://github.com/saifurcubd/Cancer-Detection


Author(s):  
Woosub Jung ◽  
Amanda Watson ◽  
Scott Kuehn ◽  
Erik Korem ◽  
Ken Koltermann ◽  
...  

For the past several decades, machine learning has played an important role in sports science with regard to player performance and result prediction. However, it is still challenging to quantify team-level game performance because there is no strong ground truth. Thus, a team cannot receive feedback in a standardized way. The aim of this study was twofold. First, we designed a metric called LAX-Score to quantify a collegiate lacrosse team's athletic performance. Next, we explored the relationship between our proposed metric and practice sensing features for performance enhancement. To derive the metric, we utilized feature selection and weighted regression. Then, the proposed metric was statistically validated on over 700 games from the last three seasons of NCAA Division I women's lacrosse. We also explored our biometric sensing dataset obtained from a collegiate team's athletes over the course of a season. We then identified the practice features that are most correlated with high-performance games. Our results indicate that LAX-Score provides insight into athletic performance beyond wins and losses. Moreover, though COVID-19 has stalled implementation, the collegiate team studied applied our feature outcomes to their practices, and the initial results look promising with regard to better performance.


Sign in / Sign up

Export Citation Format

Share Document