scholarly journals Optical Characterization of DebriSat Fragments in Support of Orbital Debris Environmental Models

Author(s):  
Heather M. Cowardin ◽  
John M. Hostetler ◽  
James I. Murray ◽  
Jacqueline A. Reyes ◽  
Corbin L. Cruz

AbstractThe NASA Orbital Debris Program Office (ODPO) develops, maintains, and updates orbital debris environmental models, such as the NASA Orbital Debris Engineering Model (ORDEM), to support satellite designers and operators by estimating the risk from orbital debris impacts on their vehicles in orbit. Updates to ORDEM utilize the most recent validated datasets from radar, optical, and in situ sources to provide estimates of the debris flux as a function of size, material density, impact speed, and direction along a mission orbit. On-going efforts within the NASA ODPO to update the next version of ORDEM include a new parameter that highly affects the damage risk – shape. Shape can be binned by material density and size to better understand the damage assessments on spacecraft. The in situ and laboratory research activities at the NASA ODPO are focused on cataloging and characterizing fragments from a laboratory hypervelocity-impact test using a high-fidelity, mock-up satellite, DebriSat, in controlled and instrumented laboratory conditions. DebriSat is representative of present-day, low Earth orbit satellites, having been constructed with modern spacecraft materials and techniques. The DebriSat fragment ensemble provides a variety of shapes, bulk densities, and dimensions. Fragments down to 2 mm in size are being characterized by their physical and derived properties. A subset of fragments is being analyzed further in NASA’s Optical Measurement Center (OMC) using broadband, bidirectional reflectance measurements to provide insight into the optical-based NASA Size Estimation Model. Additionally, pre-impact spectral measurements on a subset of DebriSat materials were acquired for baseline material characterization. This paper provides an overview of DebriSat, the status of the project, and ongoing fragment characterization efforts within the OMC.

Author(s):  
Joel Williamsen ◽  
Michael Squire ◽  
Steven Evans

Abstract This paper describes a method derived to assess the probability of two types of complex cable failures (partial and full wire breaks), considering their location with respect to the debris spray from penetration of multi-layer insulation (MLI) suspended over them, and the likelihood of impacting particle sizes and velocities as predicted by NASA’s model for predicting orbital debris impact size and velocity distributions for satellites in low earth orbit, ORDEM. The smooth particle hydrodynamics (SPH) code was used to determine the onset of these two failure types following hypervelocity impact for different orbital debris velocities, sizes and orientations relative to four different wire locations for a prototypical satellite in a 98-degree polar orbit at an altitude of approximately 750 km (i.e., a typical weather satellite). Interpolations between hydrocode results, combined with ORDEM predictions of orbital debris likelihoods, were used to predict overall risk of each failure type. Adding a few layers of beta cloth over the wires cut the risk of each failure type in half.


1992 ◽  
Vol 114 (3) ◽  
pp. 135-141
Author(s):  
Jennifer L. Rhatigan ◽  
Eric L. Christiansen ◽  
Michael L. Fleming

A great deal of experimentation and analysis has been performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration has been found to depend upon mission-specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density, and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. This paper describes the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to Space Station Freedom requirements over the expected lifetime.


Author(s):  
Leslie E. Lamberson ◽  
Ares J. Rosakis

Hypervelocity impact is a rising concern in spacecraft missions where man-made debris in low-earth orbit as well as micrometeroids have the potential to damage not only the structural components, but also the optical, electrical, and thermal components of a space asset. Little has been investigated regarding damage mechanisms and dynamic fracture mechanics resulting from a hypervelocity impact in-situ. Two optical techniques, the methods of photoelasticity and caustics, in conjunction with high-speed photography are used to examine stress waves from impact of unloaded plates, as well as pre-cracked and pre-loaded plates in tension. The resulting photographs are analyzed to extract information regarding stress wave interactions, crack speeds and the dynamic stress field ahead of the moving cracks.


Author(s):  
Leslie E. Lamberson ◽  
Ares J. Rosakis

Hypervelocity impact is a rising concern in spacecraft missions where man-made debris in low-earth orbit as well as micrometeroids have the potential to damage not only the structural components, but also the optical, electrical, and thermal components of a space asset. Little has been investigated regarding damage mechanisms and dynamic fracture mechanics resulting from a hypervelocity impact in-situ. Two optical techniques, the methods of photoelasticity and caustics, in conjunction with high-speed photography are used to examine stress waves from impact of unloaded plates, as well as pre-cracked and pre-loaded plates in tension. The resulting photographs are analyzed to extract information regarding stress wave interactions, crack speeds and the dynamic stress field ahead of the moving cracks.


Author(s):  
Heather Cowardin ◽  
Phillip Anz-Meador ◽  
James Murray ◽  
J.-C. Liou ◽  
Eric Christiansen ◽  
...  

Abstract Existing DOD and NASA satellite breakup models are based on a key laboratory test, the 1992 Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. To update and improve these models, the NASA Orbital Debris Program Office, in collaboration with the Air Force Space and Missile Systems Center, The Aerospace Corporation, and the University of Florida, conducted a hypervelocity impact test using a high-fidelity mock-up satellite, DebriSat, in controlled and instrumented laboratory conditions. DebriSat is representative of present-day LEO satellites, having been constructed with modern spacecraft materials and techniques. The DebriSat fragment ensemble provided a variety of shapes, bulk densities, and dimensions. Fragments down to 2 mm in size are being characterized by their physical and derived properties. A subset of fragments will be analyzed further in laboratory radar and optical facilities to update the existing radar-based NASA Size Estimation Model (SEM) and develop a comparable optical-based SEM. Thoroughly understanding size estimates from ground-based optical and radar sensors is one of the key parameters used in assessing the environment and the risks that debris present to operational spacecraft. The data will inform updates to the current NASA Standard Satellite Breakup Model (SSBM);, which was formulated using laboratory and ground-based measurements of on-orbit fragmentation events to describe an average breakup for spacecraft and upper stage collisions and explosions. DebriSat will extend the laboratory data ensemble. The DebriSat shape and density categories provide a baseline for non-spherical projectile hypervelocity impact testing for damage assessment. The data from these tests, simulations, and analyses will be used to update the NASA Orbital Debris Engineering Model (ORDEM) with more realistic simulations of catastrophic fragmentation events for modern satellites and to assess the risk posed by the orbital debris environment. This paper provides an overview of the project, updates on the characterization process, and the NASA analysis status.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Vladimir Čebašek ◽  
Veljko Rupar ◽  
Stevan Đenadić ◽  
Filip Miletić

The bucket-wheel dredge “Kovin I” for underwater coal mining with bucket-wheel type UCW-450 has been in operation for over 20 years. Based on analyzing the bucket-wheel dredger performance, productivity, maintenance costs, and reliability, a rational decision was made: to rehabilitate the most essential parts of the dredge, including the bucket wheel and the gearbox. However, the selection and construction of the excavator parts were performed on the ground of available laboratory data for digging resistance. The data itself was determined by the testing methodology that did not include the influence of surrounding water pressure at a certain depth of mining. According to the previous findings, it was necessary to develop a specific research and testing program that would involve appropriate laboratory testing of the geomechanical parameters. These were to represent the influence of hydrostatic water pressure on the working environment—coal. Nevertheless, geomechanical laboratory research tests were initially modified to provide reliable data of cutting resistance, especially in the water under different hydrostatic pressures, fully simulating the “in situ” working conditions of mining, i.e., cutting.


2011 ◽  
Vol 52 (2) ◽  
pp. 161-170 ◽  
Author(s):  
L. Lamberson ◽  
V. Eliasson ◽  
A. J. Rosakis

1995 ◽  
Vol 16 (11) ◽  
pp. 67-72 ◽  
Author(s):  
J.C. Mandeville ◽  
L. Berthoud

2021 ◽  
Author(s):  
Ralf Srama ◽  
Jon K. Hillier ◽  
Sean Hsu ◽  
Sascha Kempf ◽  
Masanori Kobayashi ◽  
...  

<p>The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn from 2004 to 2017. Besides the study of Saturn’s E ring and its interaction with the embedded moons, CDA detected nanoparticles in the outer Saturn system moving on unbound orbits and originating primarily from Saturn’s E-ring. Although the instrument was built to detect micron and sub-micron sized particles, nano-sized grains were detected during the flyby at early Jupiter and in the outer environment at Saturn. Fast dust particles with sizes below 10 nm were measured by in-situ impact ionization and mass spectra were recorded. What are the limits of in-situ hypervelocity impact detection and what can be expected with current high-resolution mass spectrometers as flown onboard the missions DESTINY+ or EUROPA? Is the sensitivity of Dust Telescopes sufficient to detect nano-diamonds in interstellar space? This presentation summarizes the current experience of in-situ dust detectors and gives a prediction for future missions. In summary, current Dust Telescopes with integrated high-resolution mass spectrometers are more sensitive than the CASSINI Cosmic Dust Analyzer.</p>


Sign in / Sign up

Export Citation Format

Share Document