scholarly journals Deep-Space Optical Navigation for M-ARGO Mission

Author(s):  
V. Franzese ◽  
F. Topputo ◽  
F. Ankersen ◽  
R. Walker

AbstractThe Miniaturised Asteroid Remote Geophysical Observer (M-ARGO) mission is designed to be ESA’s first stand-alone CubeSat to independently travel in deep space with its own electric propulsion and direct-to-Earth communication systems in order to rendezvous with a near-Earth asteroid. Deep-space Cubesats are appealing owing to the scaled mission costs. However, the operational costs are comparable to those of traditional missions if ground-based orbit determination is employed. Thus, autonomous navigation methods are required to favour an overall scaling of the mission cost for deep-space CubeSats. M-ARGO is assumed to perform an autonomous navigation experiment during the deep-space cruise phase. This paper elaborates on the deep-space navigation experiment exploiting the line-of-sight directions to visible beacons in the Solar System. The aim is to assess the experiment feasibility and to quantify the performances of the method. Results indicate feasibility of the autonomous navigation for M-ARGO with a 3σ accuracy in the order of 1000 km for the position components and 1 m/s for the velocity components in good observation conditions, utilising miniaturized optical sensors.

2021 ◽  
pp. 1-10
Author(s):  
Troy Howe ◽  
Steve Howe ◽  
Jack Miller

2018 ◽  
Vol 11 (4) ◽  
pp. 471-485 ◽  
Author(s):  
Bing Hua ◽  
Zhiwen Zhang ◽  
Yunhua Wu ◽  
Zhiming Chen

Purpose The geomagnetic field vector is a function of the satellite’s position. The position and speed of the satellite can be determined by comparing the geomagnetic field vector measured by on board three-axis magnetometer with the standard value of the international geomagnetic field. The geomagnetic model has the disadvantages of uncertainty, low precision and long-term variability. Therefore, accuracy of autonomous navigation using the magnetometer is low. The purpose of this paper is to use the geomagnetic and sunlight information fusion algorithm to improve the orbit accuracy. Design/methodology/approach In this paper, an autonomous navigation method for low earth orbit satellite is studied by fusing geomagnetic and solar energy information. The algorithm selects the cosine value of the angle between the solar light vector and the geomagnetic vector, and the geomagnetic field intensity as observation. The Adaptive Unscented Kalman Filter (AUKF) filter is used to estimate the speed and position of the satellite, and the simulation research is carried out. This paper also made the same study using the UKF filter for comparison with the AUKF filter. Findings The algorithm of adding the sun direction vector information improves the positioning accuracy compared with the simple geomagnetic navigation, and the convergence and stability of the filter are better. The navigation error does not accumulate with time and has engineering application value. It also can be seen that AUKF filtering accuracy is better than UKF filtering accuracy. Research limitations/implications Geomagnetic navigation is greatly affected by the accuracy of magnetometer. This paper does not consider the spacecraft’s environmental interference with magnetic sensors. Practical implications Magnetometers and solar sensors are common sensors for micro-satellites. Near-Earth satellite orbit has abundant geomagnetic field resources. Therefore, the algorithm will have higher engineering significance in the practical application of low orbit micro-satellites orbit determination. Originality/value This paper introduces a satellite autonomous navigation algorithm. The AUKF geomagnetic filter algorithm using sunlight information can obviously improve the navigation accuracy and meet the basic requirements of low orbit small satellite orbit determination.


2011 ◽  
Vol 1 ◽  
pp. 173-177
Author(s):  
Szu Lin Su ◽  
Yi Wen Su ◽  
Ho Nien Shou ◽  
Chien Sheng Chen

When there is non-line-of-sight (NLOS) path between the mobile station (MS) and base stations (BSs), it is possible to integrate many kinds of measurements to achieve more accurate measurements of the MS location. This paper proposed hybrid methods that utilize time of arrival (TOA) at five BSs and angle of arrival (AOA) information at the serving BS to determine the MS location in NLOS environments. The methods mitigate the NLOS effect simply by the weighted sum of the intersections between five TOA circles and the AOA line without requiring priori knowledge of NLOS error statistics. Simulation results show that the proposed methods always give superior performance than Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).


Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1225-1243 ◽  
Author(s):  
Jose-Pablo Sanchez-Rodriguez ◽  
Alejandro Aceves-Lopez

SUMMARYThis paper presents an overview of the most recent vision-based multi-rotor micro unmanned aerial vehicles (MUAVs) intended for autonomous navigation using a stereoscopic camera. Drone operation is difficult because pilots need the expertise to fly the drones. Pilots have a limited field of view, and unfortunate situations, such as loss of line of sight or collision with objects such as wires and branches, can happen. Autonomous navigation is an even more difficult challenge than remote control navigation because the drones must make decisions on their own in real time and simultaneously build maps of their surroundings if none is available. Moreover, MUAVs are limited in terms of useful payload capability and energy consumption. Therefore, a drone must be equipped with small sensors, and it must carry low weight. In addition, a drone requires a sufficiently powerful onboard computer so that it can understand its surroundings and navigate accordingly to achieve its goal safely. A stereoscopic camera is considered a suitable sensor because of its three-dimensional (3D) capabilities. Hence, a drone can perform vision-based navigation through object recognition and self-localise inside a map if one is available; otherwise, its autonomous navigation creates a simultaneous localisation and mapping problem.


2010 ◽  
Vol 5 (2) ◽  
pp. 5-7
Author(s):  
Aleksandr V. Britvin

Last time optical atmospheric communication systems between objects without line of sight, due to the scattering of optical irradiation on the air particles are investigating by many laboratories. The distortion estimation of optical pulses during the atmospheric channel with scattering passing are discussed in this paper


2020 ◽  
Vol 309 ◽  
pp. 01013
Author(s):  
Gleb S. Vasilyev ◽  
Oleg R. Kuzichkin ◽  
Dmitriy I. Surzhik ◽  
vetlana M. Kharchuk

The possibility of providing communication in difficult conditions on the basis of Flying Ad Hoc Networks (FANET) requires the use of non-electronic means of communication. It is proposed to use optical communication in the UV-C range in the absence of line-of-sight between the nodes of the FANET network. The general scheme of the optical transmitter and receiver of UV-C range is considered and the review of the components required for its implementation, taking into account the application possibility in highly mobile small-sized UAVs, is carried out. As a result of the analysis of FANET networks with UV-C channel, physical and channel level parameters critical for network performance are revealed. Methods of adaptive change of these parameters in the practical implementation of the UV-C communication system in FANET networks are proposed.


Sign in / Sign up

Export Citation Format

Share Document