The Expected Effects of Climate Change on Tree Growth and Wood Quality in Southern Africa

2016 ◽  
Vol 4 (2) ◽  
pp. 99-111 ◽  
Author(s):  
Francis Munalula ◽  
Thomas Seifert ◽  
Martina Meincken
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


Author(s):  
Chaonan Zhao ◽  
Hanbing Zhang ◽  
Man Wang ◽  
Hong Jiang ◽  
Jian Peng ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Laura Marqués ◽  
Drew M. P. Peltier ◽  
J. Julio Camarero ◽  
Miguel A. Zavala ◽  
Jaime Madrigal-González ◽  
...  

AbstractLegacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.


2020 ◽  
pp. 103406
Author(s):  
Vladimir Matskovsky ◽  
Alejandro Venegas-González ◽  
René Garreaud ◽  
Fidel A. Roig ◽  
Alvaro G. Gutiérrez ◽  
...  

2016 ◽  
Vol 161 ◽  
pp. 556-564 ◽  
Author(s):  
Charles Fant ◽  
C. Adam Schlosser ◽  
Kenneth Strzepek

2018 ◽  
Vol 42 (42) ◽  
pp. 115-127 ◽  
Author(s):  
William Mushawemhuka ◽  
Jayne M. Rogerson ◽  
Jarkko Saarinen

Abstract Climate and weather are important resources for tourism. In particular, nature-based tourism activities and operations are largely dependent on and affected by environmental conditions and changes. Due to the significant socio-economic role of the nature-based tourism and the tourism industry, in general, in the region of southern Africa it is important to understand the dynamics between the industry and climate change. A key aspect of this understanding are perceptions and adaptation preparedness of tourism operators towards the estimated impact of climate change. There is a dearth of empirical studies on climate change perceptions and adaptation in nature-based tourism operations across southern Africa and specifically from Zimbabwe. This research gap is addressed in this article which provides an exploratory analysis of the nature of climate change adaptation practices occurring in southern Africa using evidence from Hwange National Park, Zimbabwe.


2021 ◽  
Author(s):  
Dolapo Enahoro ◽  
Jason Sircely ◽  
Randall B. Boone ◽  
Stephen Oloo ◽  
Adam M. Komarek ◽  
...  

The demand for livestock-derived foods has steadily grown over the past decades and rising incomes and human populations are expected to see demand further increase. It is unclear if current livestock feed resources are adequately prepared to meet future demand especially given the looming challenges of climate change. Many feeds such as grasses, crop by-products, and other biomass may not be widely grown commercially or sold in formal markets but are critical sources of livestock feed in many low-resource settings in which ruminant livestock production is important. The availability of these feed types can determine the extent to which the livestock sector can expand to meet growing, and sometimes critical, demand for animal-source foods. In this paper, we compare country-level projections of livestock demand from a global economic model to simulated data on feed biomass production. Our comparisons account separately for beef, lamb, and dairy demand. The data allow us to assess the future sufficiency of key sources of feed biomass, and hence aspects of the expansion capacity of livestock production in selected countries in Southern Africa. Our simulation results project that given the interacting effects of projected climate change and changes in income and population in the region, there will not be enough feed biomass produced domestically to meet growing demand for livestock products. For three types of feed biomass (feed crops including grains, grasses, and crop by-products) for which future livestock feed sufficiency was examined, our results showed feed sufficiency declines for all three feed types in Malawi and Mozambique, for two out of three in South Africa and for one of three in Zambia, under intermediate and extreme scenarios of climate change in 2050. Our results suggest an urgent need to improve feed biomass productivity to support future supply of animal protein in the study countries.


2021 ◽  
Author(s):  
Maria Chara Karypidou ◽  
Eleni Katragkou ◽  
Stefan Pieter Sobolowski

Abstract. The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is projected to experience severe precipitation shortages in the coming decades. Ensuring that our modelling tools are fit for the purpose of assessing these changes is critical. In this work we compare a range of satellite products along with gauge-based datasets. Additionally, we investigate the behaviour of regional climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX) – Africa domain, along with simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6). We identify considerable variability in the standard deviation of precipitation between satellite products that merge with rain gauges and satellite products that do not, during the rainy season (Oct–Mar), indicating high observational uncertainty for specific regions over SAF. Good agreement both in spatial pattern and the strength of the calculated trends is found between satellite and gauge-based products, however. Both CORDEX-Africa and CMIP5 ensembles underestimate the observed trends during the analysis period. The CMIP6 ensemble displayed persistent drying trends, in direct contrast to the observations. The regional ensemble exhibited improved performance compared to its forcing (CMIP5), when the annual cycle and the extreme precipitation indices were examined, confirming the added value of the higher resolution regional climate simulations. The CMIP6 ensemble displayed a similar behaviour to CMIP5, however reducing slightly the ensemble spread. However, we show that reproduction of some key SAF phenomena, like the Angolan Low (which exerts a strong influence on regional precipitation), still poses a challenge for the global and regional models. This is likely a result of the complex climatic process that take place. Improvements in observational networks (both in-situ and satellite), as well as continued advancements in high-resolution modelling will be critical, in order to develop a robust assessment of climate change for southern Africa.


Sign in / Sign up

Export Citation Format

Share Document