Determination of the optimum steady-state performance of an open-loop and a closed-loop valve-controlled hydro-motor drive: a design approach

Author(s):  
Sujit Kumar ◽  
K. Dasgupta ◽  
J. Das
Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 4031-4034

Fly back converter is the most popular converter because of its simplicity, low part counts and isolation. It occupies less volume and it saves cost. Fly back converter steps up and step down the voltage with the same polarity. Open loop operation remains insensitive to the input voltage and load variations. Matlab Simulink model for Fly back converter is established using PI controller. Open loop Fly back converter system and closed loop fly back converter systems are simulated and their outcomes are compared. Comparison is done in terms of Rise time ,Settling time and steady state error


2017 ◽  
Vol 19 (9) ◽  
pp. 952-962 ◽  
Author(s):  
Saeed Shayestehmanesh ◽  
James C Peyton Jones ◽  
Jesse Frey

Most knock controllers respond to knock events which are defined according to some threshold knock intensity. Multi-threshold knock events offer more informative feedback since they encode not just the occurrence of knock events but also some measure of their intensity. While this has the potential for improved control, it is hard to assess the extent to which any benefits are truly realized because (in common with all knock control systems) the results of any single experiment or simulation depends on the random arrival of knock events in that instance. In this article, methods are developed instead to compute the statistical properties of the closed-loop response of a general multi-threshold knock controller, thereby providing a much more complete and rigorous characterization of its performance than has previously been possible. The method is applied to single- and dual-threshold knock controllers and used to provide a rigorous comparison of the transient and steady-state performance of these different control laws. The method can also be used as a calibration aid to assess the effects of different controller gains in reliable, repeatable fashion.


Author(s):  
J Roshanian ◽  
M Zareh ◽  
H H Afshari ◽  
M Rezaei

The current paper presents the determination of a closed-loop guidance law for an orbital injection problem using two different approaches and, considering the existing time-optimal open-loop trajectory as the nominal solution, compares the advantages of the two proposed strategies. In the first method, named neighbouring optimal control (NOC), the perturbation feedback method is utilized to determine the closed-loop trajectory in an analytical form for the non-linear system. This law, which produces feedback gains, is in general a function of small perturbations appearing in the states and constraints separately. The second method uses an L1 adaptive strategy in determination of the non-linear closed-loop guidance law. The main advantages of this method include characteristics such as improvement of asymptotic tracking, guaranteed time-delay margin, and smooth control input. The accuracy of the two methods is compared by introducing a high-frequency sinusoidal noise. The simulation results indicate that the L1 adaptive strategy has a better performance than the NOC method to track the nominal trajectory when the noise amplitude is increased. On the other hand, the main advantage of the NOC method is its ability to solve a non-linear, two-point, boundary-value problem in the minimum time.


1978 ◽  
Vol 11 (12) ◽  
pp. 461-468 ◽  
Author(s):  
E. C. Hind

A method is shown for the determination of gain settings for specified time responses from the open loop frequency responses. It is based on the use of the contour of constant closed loop phase angle, α = −90°. The method primarily yields the value of the static loop gain or velocity constant which is required so that the closed loop response will have a specified value of relative damping. For most systems, the solution is simple and direct.


1997 ◽  
Vol 119 (2) ◽  
pp. 298-300 ◽  
Author(s):  
C. R. Knospe ◽  
S. M. Tamer ◽  
S. J. Fedigan

Experimental results have recently demonstrated that an adaptive open-loop control strategy can be highly effective in the suppression of the unbalance induced vibration of rotors supported in active magnetic bearings. A synthesis method is presented for determining the adaptive law’s gain matrix such that the adaptation’s stability and steady-state performance are robust with respect to structured uncertainty.


Sign in / Sign up

Export Citation Format

Share Document