Fatty acid analysis of in vitro shoot cultures of Portulaca oleracea Linn

Author(s):  
Archana Srivastava ◽  
Aruna Joshi
Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


1988 ◽  
Vol 149 (2) ◽  
pp. 166-172 ◽  
Author(s):  
Stephen F. Chandler ◽  
Kee Yoeup Paek ◽  
Eng-Chong Pua ◽  
Elena Ragolsky ◽  
Binay B. Mandal ◽  
...  

2007 ◽  
Vol 2 (8) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Manoj K Goel ◽  
Arun K Kukreja ◽  
Anil K Singh ◽  
Suman Preet S Khanuja

Phyllocladane diterpenoids, particularly calliterpenone (1) and calliterpenone monoacetate (2), isolated from leaves of Callicarpa macrophylla, produced significantly higher growth and multiplication of in vitro shoot cultures of Rauwolfia serpentina at 0.25 and 0.5 mg/L concentrations, respectively, compared to certain other plant growth regulators (0.1-5.0 mg/L) tested under in vitro conditions. This is the first report of the plant growth promoting activities of 1 and 2 in plant tissue cultures.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1784
Author(s):  
Eliana Martínez-Padilla ◽  
Kexin Li ◽  
Heidi Blok Frandsen ◽  
Marcel Skejovic Joehnke ◽  
Einar Vargas-Bello-Pérez ◽  
...  

Plant-based milk alternatives (PBMA) are a new popular food trend among consumers in Europe and North America. The forecast shows that PBMA will double their value by 2023. The objective of this study was to analyze the nutritional value of commercial products in terms of their fatty acid profile and protein digestibility from commercial PBMA. Eight commercially available PBMA were selected for fatty acid analysis, performed with gas chromatography of methylated fatty acids (GC-FAME), and, from these, four commercial products (almond drink, hemp drink, oat drink, and soy drink) were selected for a short-term in vitro protein digestibility (IVPD) analysis. The fatty acid analysis results showed that most of the products predominantly contained oleic acid (C18:1 ω-9) and linoleic acid (C18:2 ω-6). Hemp drink contained the highest omega-6/omega-3 (ω6/ω3) ratio among all tested products (3.43). Oat drink and almond drink were the PBMA with the highest short-term protein digestibility, non-significantly different from cow’s milk, while soy drink showed the lowest value of protein digestibility. In conclusion, PBMA showed a significant variability depending on the plant source, both in terms of fatty acid composition and protein digestibility. These results provide more in-depth nutritional information, for future product development, and for consumer’s choice.


2015 ◽  
Vol 84 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Paulina Mistrzak ◽  
Hanna Celejewska-Marciniak ◽  
Wojciech J. Szypuła ◽  
Olga Olszowska ◽  
Anna K. Kiss

The aim of our study was to investigate the presence and quantitative contents of lignans in the tissues of <em>Taxus</em> ×<em>media</em>. The presence of the lignans: pinoresinol, matairesinol and secoisolariciresinol was assessed in needles, shoots cultures and suspension culture. Pinoresinol was the only lignan found in the tissue of <em>T.</em> ×<em>media</em>. The total pinoresinol content in the needles and in the shoots was 1.24 mg/g dry weight (dw) and 0.69 mg/g dw, respectively. Most of the pinoresinol identified was appeared glycosidically bound. In needles, the amount of glycosidically bound pinoresinol (0.81 mg/g dw) was about twice as high as that of free pinoresinol (0.43 mg/g dw). The content of free and glycosidically bound pinoresinol showed the level of 0.18 mg/g dw and 0.51 mg/g dw, respectively in the in vitro shoot cultures. In the cell culture, no pinoresinol was found.


Sign in / Sign up

Export Citation Format

Share Document