scholarly journals Identification and quantitative determination of pinoresinol in Taxus ×media Rehder needles, cell suspension and shoot cultures

2015 ◽  
Vol 84 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Paulina Mistrzak ◽  
Hanna Celejewska-Marciniak ◽  
Wojciech J. Szypuła ◽  
Olga Olszowska ◽  
Anna K. Kiss

The aim of our study was to investigate the presence and quantitative contents of lignans in the tissues of <em>Taxus</em> ×<em>media</em>. The presence of the lignans: pinoresinol, matairesinol and secoisolariciresinol was assessed in needles, shoots cultures and suspension culture. Pinoresinol was the only lignan found in the tissue of <em>T.</em> ×<em>media</em>. The total pinoresinol content in the needles and in the shoots was 1.24 mg/g dry weight (dw) and 0.69 mg/g dw, respectively. Most of the pinoresinol identified was appeared glycosidically bound. In needles, the amount of glycosidically bound pinoresinol (0.81 mg/g dw) was about twice as high as that of free pinoresinol (0.43 mg/g dw). The content of free and glycosidically bound pinoresinol showed the level of 0.18 mg/g dw and 0.51 mg/g dw, respectively in the in vitro shoot cultures. In the cell culture, no pinoresinol was found.

2011 ◽  
Vol 74 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Izabela Grzegorczyk ◽  
Ireneusz Bilichowski ◽  
Elżbieta Mikiciuk-Olasik ◽  
Halina Wysokińska

The concentrations of carnosic acid, carnosol and rosmarinic acid in different materials from differentiated (multiple shoot cultures and regenerated plants) and undifferentiated (callus and cell suspension) in vitro cultures of <em>Salvia officinalis</em> were determined by HPLC. The results suggested that diterpenoid (carnosic acid and carnosol) production is closely related to shoot differentiation. The highest diterpenoid yield (11.4 mg g<sup>-1</sup> for carnosic acid and 1.1 mg g<sup>-1</sup> for carnosol) was achieved in shoots of 10-week-old micropropagated plants. The levels were comparable to those found in shoots of naturally growing plants. Undifferentiated callus and cell suspension cultures produced only very low amounts of carnosol (ca. 0.05 mg g<sup>-1</sup> of dry weight). In contrast, content of rosmarinic acid in callus and suspension cultures as well as shoots growing in vitro and in vivo was similar and ranged between 11.2 and 18.6 mg g<sup>-1</sup> of dry weight.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4669
Author(s):  
Jameel Mohammed Al-Khayri ◽  
Poornananda Madhava Naik

Plants that synthesize bioactive compounds that have high antioxidant value and elicitation offer a reliable in vitro technique to produce important nutraceutical compounds. The objective of this study is to promote the biosynthesis of these phenolic compounds on a large scale using elicitors in date palm cell suspension culture. Elicitors such as pectin, yeast extract (YE), salicylic acid (SA), cadmium chloride (CdCl2), and silver nitrate (AgNO3) at 50, 100, and 200 mg/L concentrations are used. The effects of elicitors on cell culture were determined in terms of biomass [packed cell volume (PCV), fresh and dry weight], antioxidant activity, and phenolic compounds (catechin, caffeic acid, kaempferol, apigenin) were determined using high-performance liquid chromatography (HPLC). Results revealed that enhanced PCV (12.3%), total phenolic content [317.9 ± 28.7 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)], and radical scavenging activity (86.0 ± 4.5%) were obtained in the 50 mg/L SA treated cell culture of Murashige and Skoog (MS) medium. The accumulation of optimum catechin (26.6 ± 1.3 µg/g DW), caffeic acid (31.4 ± 3.8 µg/g DW), and kaempferol (13.6 ± 1.6 µg/g DW) was found in the 50 mg/L SA-treated culture when compared to the control. These outcomes could be of great importance in the nutraceutical and agronomic industries.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Gangaprasad A

Silver nitrate (AgNO3) enhanced production of anthraquinone was standardized in cell suspension cultures of Gynochthodes umbellata, a plant mentioned in the Hortus Malabaricus. The present research investigates the effect of silver nitrate, an abiotic elicitor on production of anthraquinone in in vitro cell suspension cultures of G. umbellata. Friable callus culture was established using in vitro derived leaf segment obtained from the nodal explant culture maintained in Murashige and Skoog (MS) medium containing 2 mg/l benzyl amino purine (BAP) and 3% sucrose. The in vitro derived leaf segments (0.5cm2) were cultured on MS medium containing 1 mg/l 2,4-D and 2% glucose for the production of friable callus. After 30 days of culture, uniform yellow friable callus was inoculated into MS liquid medium containing 1 mg/l 2,4-D and 2 % glucose for raising suspension culture. Uniform cell suspension was transferred to same media constituents and treated with different concentrations of AgNO3 on 25th day of culture. Fresh weight, dry weight and accumulation of anthraquinone content was studied and found that AgNO3 caused a marginal increase in biomass and anthraquinone based on the concentration and duration of AgNO3 treatment. A maximum fresh weight (19.48 g/fwt) dry weight (1.92g/dwt) and highest amount of anthraquinone content (48.62 mg/gdwt) were recorded in MS medium supplemented with 1 mg/l 2,4-D, 2%glucose and 3.5µM AgNO3 after 72 hrs of incubation.


2012 ◽  
Vol 81 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Krystyna Skalicka-Woźniak ◽  
Janusz Szypowski ◽  
Renata Łoś ◽  
Marek Siwulski ◽  
Krzysztof Sobieralski ◽  
...  

Quantitative determination of polysaccharides in <em>Ganoderma lucidum </em>fruit bodies from different sawdust cultivation substrates and their antibacterial activity was done. Thirty six samples were analyzed. Four strains of <em>Ganoderma lucidum </em>(GL01, GL02, GL03 and GL04) were cultivated on the growth substrates of three different sawdust types: birch (Bo), maple (Kl) or alder (Ol) amended with wheat bran in three different concentrations: 10, 20 and 30% (w/w). Even though the richest in polysaccharides was GL01 strain, the highest yields of the polysaccharides were determined in GL04Kl3 sample and was 112.82 mg/g of dry weight. The antibacterial activity of polysaccharides was determined in vitro using micro-dilution broth method. The panel of eight reference bacterial strains was used. All the polysaccharide samples tested showed the broad spectrum and the moderate antibacterial activity. <em>Micrococcus luteus </em>ATCC 10240 strain was the most sensitive with <em>MIC </em>(minimal inhibitory concentration) = 0.63 − 1.25 mg/mL.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1276
Author(s):  
Olga A. Aleynova ◽  
Andrey R. Suprun ◽  
Nikolay N. Nityagovsky ◽  
Alexandra S. Dubrovina ◽  
Konstantin V. Kiselev

Plant endophytes are known to alter the profile of secondary metabolites in plant hosts. In this study, we identified the main bacterial and fungal representatives of the wild grape Vitis amurensis Rupr. microbiome and investigated a cocultivation effect of the 14 endophytes and the V. amurensis cell suspension on biomass accumulation and stilbene biosynthesis. The cocultivation of the V. amurensis cell culture with the bacteria Agrobacterium sp., Bacillus sp., and Curtobacterium sp. for 2 weeks did not significantly affect the accumulation of cell culture fresh biomass. However, it was significantly inhibited by the bacteria Erwinia sp., Pantoea sp., Pseudomonas sp., and Xanthomonas sp. and fungi Alternaria sp., Biscogniauxia sp., Cladosporium sp., Didymella sp. 2, and Fusarium sp. Cocultivation of the grapevine cell suspension with the fungi Didymella sp. 1 and Trichoderma sp. resulted in cell death. The addition of endophytic bacteria increased the total stilbene content by 2.2–5.3 times, while the addition of endophytic fungi was more effective in inducing stilbene accumulation by 2.6–16.3 times. The highest content of stilbenes in the grapevine cells cocultured with endophytic fungi was 13.63 and 13.76 mg/g of the cell dry weight (DW) after cultivation with Biscogniauxia sp. and Didymella sp. 2, respectively. The highest content of stilbenes in the grapevine cells cocultured with endophytic bacteria was 4.49 mg/g DW after cultivation with Xanthomonas sp. The increase in stilbene production was due to a significant activation of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) gene expression. We also analyzed the sensitivity of the selected endophytes to eight antibiotics, fluconazole, and trans-resveratrol. The endophytic bacteria were sensitive to gentamicin and kanamycin, while all selected fungal strains were resistant to fluconazole with the exception of Cladosporium sp. All endophytes were tolerant of trans-resveratrol. This study showed that grape endophytes stimulate the production of stilbenes in grape cell suspension, which could further contribute to the generation of a new stimulator of stilbene biosynthesis in grapevine or grape cell cultures.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Katalin Magyar-Tábori ◽  
Nóra Mendler-Drienyovszki ◽  
Alexandra Hanász ◽  
László Zsombik ◽  
Judit Dobránszki

In general, in vitro virus elimination is based on the culture of isolated meristem, and in addition thermotherapy, chemotherapy, electrotherapy, and cryotherapy can also be applied. During these processes, plantlets suffer several stresses, which can result in low rate of survival, inhibited growth, incomplete development, or abnormal morphology. Even though the in vitro cultures survive the treatment, further development can be inhibited; thus, regeneration capacity of treated in vitro shoots or explants play also an important role in successful virus elimination. Sensitivity of genotypes to treatments is very different, and the rate of destruction largely depends on the physiological condition of plants as well. Exposure time of treatments affects the rate of damage in almost every therapy. Other factors such as temperature, illumination (thermotherapy), type and concentration of applied chemicals (chemo- and cryotherapy), and electric current intensity (electrotherapy) also may have a great impact on the rate of damage. However, there are several ways to decrease the harmful effect of treatments. This review summarizes the harmful effects of virus elimination treatments applied on tissue cultures reported in the literature. The aim of this review is to expound the solutions that can be used to mitigate phytotoxic and other adverse effects in practice.


2008 ◽  
Vol 43 (10) ◽  
pp. 1325-1330 ◽  
Author(s):  
Lucymeire Souza Morais-Lino ◽  
Janay Almeida dos Santos-Serejo ◽  
Sebastião de Oliveira e Silva ◽  
José Raniere Ferreira de Santana ◽  
Adilson Kenji Kobayashi

The objective of this study was to establish cell suspension culture and plant regeneration via somatic embryogenesis of a Brazilian plantain, cultivar Terra Maranhão, AAB. Immature male flowers were used as explant source for generating highly embryogenic cultures 45 days after inoculation, which were used for establishment of cell suspension culture and multiplication of secondary somatic embryos. Five semisolid culture media were tested for differentiation, maturation, somatic embryos germination and for plant regeneration. An average of 558 plants per one milliliter of 5% SCV (settled cell volume) were regenerated in the MS medium, with 11.4 µM indolacetic acid and 2.2 µM 6-benzylaminopurine. Regenerated plants showed a normal development, and no visible somaclonal variation was observed in vitro. It is possible to regenerate plants from cell suspensions of plantain banana cultivar Terra using MS medium supplemented with 11.4 µM of IAA and 2.2 µM of BAP.


Sign in / Sign up

Export Citation Format

Share Document