scholarly journals Interior-stress fields produced by a general axisymmetric punch

Friction ◽  
2021 ◽  
Author(s):  
Longxiang Yang ◽  
Zhanjiang Wang ◽  
Weiji Liu ◽  
Guocheng Zhang ◽  
Bei Peng

AbstractThis work is a supplement to the work of Sneddon on axisymmetric Boussinesq problem in 1965 in which the distributions of interior-stress fields are derived here for a punch with general profile. A novel set of mathematical procedures is introduced to process the basic elastic solutions (obtained by the method of Hankel transform, which was pioneered by Sneddon) and the solution of the dual integral equations. These processes then enable us to not only derive the general relationship of indentation depth D and total load P that acts on the punch but also explicitly obtain the general analytical expressions of the stress fields beneath the surface of an isotropic elastic half-space. The usually known cases of punch profiles are reconsidered according to the general formulas derived in this study, and the deduced results are verified by comparing them with the classical results. Finally, these general formulas are also applied to evaluate the von Mises stresses for several new punch profiles.

Author(s):  
M Ciavarella ◽  
D A Hills ◽  
G Monno

The contact problem and stress state for indentation by a flat punch with rounded edges is studied. For the contact problem itself analytical solutions are obtained for both surface pressure and interior stress fields. Cases of normal indentation and frictional contact, the latter in both sliding or partial slip conditions, are all treated. The transition from the Hertzian configuration to the contact between a nominally flat pad and contacting flat surface is discussed, and it is found that the strength of the contact decays surprisingly slowly. Regarding the von Mises yield parameter, there is a range of configurations for which the strength is actually higher than the Hertzian one, and the strength decays only when the corner radii are very small. The present solution is therefore a realistic alternative to the classical rigid-flat punch idealization, and has particular application to fretting fatigue tests.


1994 ◽  
Vol 18 (3) ◽  
pp. 249-267
Author(s):  
M.A. Sahir Arikan

Contact stresses in bodies in line contact are determined by using the analytical expressions developed for two elastic bodies held in contact by forces normal to the area of contact and accompanied by frictional (tangential) forces. Variations of the stresses in the contact region, and effect of coefficient of friction on these stresses is investigated. Maximum values of principal, maximum shearing and von Mises stresses are determined for static failure analysis; mean and alternating von Mises stresses are determined for fatigue failure analysis. Charts are prepared for calculation of the extreme values of the stresses, and locations of the points at which these extreme values occur.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingheng Shu ◽  
Quanyi Wang ◽  
Desmond Y.R. Chong ◽  
Zhan Liu

AbstractLoadings in temporomandibular joints (TMJs) are essential factors in dysfunction of TMJs, and are barely noticed in treatment of maxillofacial deformity. The only approach, which can access stresses in TMJs, could expend day’s even weeks to complete. The objective of the study was to compare the differences of the morphological and biomechanical characteristics of TMJs between asymptomatic subjects and patients with mandibular prognathism, and to preliminarily analyze the connection between the two kinds of characteristics. Morphological measurements and finite element analysis (FEA) corresponding to the central occlusion were carried out on the models of 13 mandibular prognathism patients and 10 asymptomatic subjects. The results indicated that the joint spaces of the patients were significantly lower than those of the asymptomatic subjects, while the stresses of patients were significantly greater than those of asymptomatic subjects, especially the stresses on discs. The results of Pearson correlation analysis showed that weak or no correlations were found between the von Mises stresses and the joint spaces of asymptomatic subjects, while moderate, even high correlations were found in the patients. Thus, it was shown to be a feasible way to use morphological parameters to predict the internal loads of TMJs.


2013 ◽  
Vol 703 ◽  
pp. 200-203
Author(s):  
Shao Biao Cai ◽  
Yong Li Zhao

This study presents a first attempt to develop a numerical three-dimensional multilayered (more than 2 composite layered coatings) elasticperfectly plastic rough solids model to investigate the contact behavior under combined normal loading and tangential traction. Contact analyses are performed to study the effects composite thin film layers. Local contact pressure profiles, von Mises stresses, and shear stresses as a function of material properties and applied normal and tangential friction loads are calculated.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jun Fu ◽  
Ming Ni ◽  
Jiying Chen ◽  
Xiang Li ◽  
Wei Chai ◽  
...  

Purpose. The purpose of this study was to establish the finite element analysis (FEA) model of acetabular bone defect reconstructed by 3D printed Ti6Al4V augment and TM augment and further to analyze the stress distribution and clinical safety of augments, screws, and bones.Methods. The FEA model of acetabular bone defect reconstructed by 3D printed Ti6Al4V augment was established by the CT data of a patient with Paprosky IIIA defect. The von Mises stresses of augments, screws, and bones were analyzed by a single-legged stance loading applied in 3 increments (500 N, 2000 N, and 3000 N).Results. The peak von Mises stresses under the maximal loading in the 3D printed augments, screws, and cortical bone were less than the yield strength of the corresponding component. However, the peak stress in the bone was greater than the yield strength of cancellous bone under walking or jogging loading. And under the same loading, the peak compressive and shear stresses in bone contact with TM augment were larger than these with 3D printed augment.Conclusions. The FEA results show that all the components will be intact under single-legged standing. However, partial cancellous bone contacted with 3D printed augment and screws will lose efficacy under walking or jogging load. So we recommend that patients can stand under full bearing, but can not walk or jog immediately after surgery.


Author(s):  
Yaqing Liu ◽  
Liancun Zheng ◽  
Xinxin Zhang ◽  
Fenglei Zong

In this paper, we present a circular motion of magnetohydrodynamic (MHD) flow for a heated generalized Oldroyd-B fluid. The fractional calculus approach is introduced to establish the constitutive relationship of a viscoelastic fluid. The velocity and temperature fields of the flow are described by fractional partial differential equations. Exact analytical solutions of velocity and temperature fields are obtained by using Hankel transform and Laplace transform for fractional calculus. Results for ordinary viscous flow are deduced by making the fractional order of differential tend to one and zero. It is shown that the fractional constitutive relation model is more useful than the conventional model for describing the properties of viscoelastic fluid.


2017 ◽  
Vol 17 (04) ◽  
pp. 1750074
Author(s):  
MD ABU HASAN ◽  
PANOS S. SHIAKOLAS

This study compares the biomechanical behavior of a mandibular full-arch fixed implant prosthesis with four implants under lingualized and conventional balanced occlusion schemes. The acrylic resin denture was supported by four titanium cylindrical implants and connected via a titanium prosthetic rectangular bar. Orthotropic material was used for the cortical and cancellous bones. The applied loadings were vertical and bilateral: 100[Formula: see text]N on first molar and 50[Formula: see text]N on first and second premolars each. For the lingualized balanced occlusion, the loadings were applied in central fossae of the posterior teeth, whereas for the conventional balanced occlusion the loadings were applied in central fossae and buccal cusps. The maximum von-Mises stresses for the lingualized and conventional balanced schemes were 301[Formula: see text]MPa and 25[Formula: see text]MPa, respectively, and were located at the neck of the posterior implants. In the denture teeth, the highest stress was located at the beginning of the cantilever extension. In the cortical bone, according to Tsai–Wu criterion, the failure index for the lingualized balanced occlusion was 1.10 and for the conventional balanced occlusion was 0.83. Thus, the conventional balanced occlusion demonstrated more favorable stress distribution in the implants and the cortical bone than the lingualized balanced occlusion.


2012 ◽  
pp. 179-188 ◽  
Author(s):  
M.P. Nagarkar ◽  
R.N. Zaware ◽  
S.G. Ghalme

Modeling and simulation of metal forming processes are increasingly in demand from the industry as the resulting models are found to be valuable tools considering the optimization of the existing and development of new processes. By the application of modeling and simulation techniques, it is possible to reduce the number of time-consuming experiments such as prototyping. Seamless tubes of various sizes and shapes are manufactured by various processes like sinking, fixed plug, floating plug, moving mandrel, cold working and hot working. The present work deals with the simulation of round tubes while passing through the sink pass, using ANSYS software. The simulation results are the displacement and von Mises stresses. The procedure can be used to improve the product quality and to study the effect of various parameters like die angle on the product quality.


Sign in / Sign up

Export Citation Format

Share Document