scholarly journals Hardware Support to Minimize the End-to-End Delay in Ethernet-Based Ring Networks

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1097
Author(s):  
Tomás P. Corrêa ◽  
Luis Almeida

Ethernet is a popular networking technology in factory automation and industrial embedded systems, frequently using a ring topology for improved fault-tolerance. As many applications demand ever shorter cycle times and a higher number of nodes, the popular ring endure to remain as a valid topology. In this work, we discuss the factors that determine the ring network delay and show how they affect the network cycle time. Since increasing the link capacity has limited reach, we explore a time-triggered protocol that brings the nodes forwarding delay near to the physical layer delay. Additionally, we propose hardware accelerators based on FPGA technology that minimise the packet reception delay from physical reception to delivery to an application handler, preserving Ethernet layers and being compatible with its standard. This paper explains the accelerators concept and implementation, presents measurements using standard Media Access Control implementations, and shows the solution effectiveness with experimental results. We achieved a delay, from physical reception to the triggering of a user-level handler, of 1.1 µs independent of the packet length.

2018 ◽  
Author(s):  
Kiramat

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communications. Maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). This document highlights the main features of IEEE 802.11n variant such as MIMO, frame aggregation and beamforming along with the problems in this variant and their solutions


2014 ◽  
Vol 24 (8) ◽  
pp. 2214-2225 ◽  
Author(s):  
Ye-Qun WANG ◽  
Feng YANG ◽  
Guo-Ce HUANG ◽  
Heng-Yang ZHANG ◽  
Jian-Xin GUO

2020 ◽  
Vol 11 (1) ◽  
pp. 317
Author(s):  
Taewon Song ◽  
Taeyoon Kim

The representative media access control (MAC) mechanism of IEEE 802.11 is a distributed coordination function (DCF), which operates based on carrier-sense multiple access with collision avoidance (CSMA/CA) with binary exponential backoff. The next amendment of IEEE 802.11 being developed for future Wi-Fi by the task group-be is called IEEE 802.11be, where the multi-link operation is mainly discussed when it comes to MAC layer operation. The multi-link operation discussed in IEEE 802.11be allows multi-link devices to establish multiple links and operate them simultaneously. Since the medium access on a link may affect the other links, and the conventional MAC mechanism has just taken account of a single link, the DCF should be used after careful consideration for multi-link operation. In this paper, we summarize the DCFs being reviewed to support the multi-radio multi-link operation in IEEE 802.11be and analyze their performance using the Markov chain model. Throughout the extensive performance evaluation, we summarize each MAC protocol’s pros and cons and discuss essential findings of the candidate MAC protocols.


Author(s):  
Nannan Li ◽  
Yu Pan ◽  
Yaran Chen ◽  
Zixiang Ding ◽  
Dongbin Zhao ◽  
...  

AbstractRecently, tensor ring networks (TRNs) have been applied in deep networks, achieving remarkable successes in compression ratio and accuracy. Although highly related to the performance of TRNs, rank selection is seldom studied in previous works and usually set to equal in experiments. Meanwhile, there is not any heuristic method to choose the rank, and an enumerating way to find appropriate rank is extremely time-consuming. Interestingly, we discover that part of the rank elements is sensitive and usually aggregate in a narrow region, namely an interest region. Therefore, based on the above phenomenon, we propose a novel progressive genetic algorithm named progressively searching tensor ring network search (PSTRN), which has the ability to find optimal rank precisely and efficiently. Through the evolutionary phase and progressive phase, PSTRN can converge to the interest region quickly and harvest good performance. Experimental results show that PSTRN can significantly reduce the complexity of seeking rank, compared with the enumerating method. Furthermore, our method is validated on public benchmarks like MNIST, CIFAR10/100, UCF11 and HMDB51, achieving the state-of-the-art performance.


2008 ◽  
Author(s):  
Lei Zhaoming ◽  
Sun Hexu ◽  
Liu Zuojun ◽  
Liang Tao

Author(s):  
John A. Stankovic ◽  
Tian He

This paper presents a holistic view of energy management in sensor networks. We first discuss hardware designs that support the life cycle of energy, namely: (i) energy harvesting, (ii) energy storage and (iii) energy consumption and control. Then, we discuss individual software designs that manage energy consumption in sensor networks. These energy-aware designs include media access control, routing, localization and time-synchronization. At the end of this paper, we present a case study of the VigilNet system to explain how to integrate various types of energy management techniques to achieve collaborative energy savings in a large-scale deployed military surveillance system.


Sign in / Sign up

Export Citation Format

Share Document