scholarly journals G-Tric: generating three-way synthetic datasets with triclustering solutions

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
João Lobo ◽  
Rui Henriques ◽  
Sara C. Madeira

Abstract Background Three-way data started to gain popularity due to their increasing capacity to describe inherently multivariate and temporal events, such as biological responses, social interactions along time, urban dynamics, or complex geophysical phenomena. Triclustering, subspace clustering of three-way data, enables the discovery of patterns corresponding to data subspaces (triclusters) with values correlated across the three dimensions (observations $$\times$$ × features $$\times$$ × contexts). With increasing number of algorithms being proposed, effectively comparing them with state-of-the-art algorithms is paramount. These comparisons are usually performed using real data, without a known ground-truth, thus limiting the assessments. In this context, we propose a synthetic data generator, G-Tric, allowing the creation of synthetic datasets with configurable properties and the possibility to plant triclusters. The generator is prepared to create datasets resembling real 3-way data from biomedical and social data domains, with the additional advantage of further providing the ground truth (triclustering solution) as output. Results G-Tric can replicate real-world datasets and create new ones that match researchers needs across several properties, including data type (numeric or symbolic), dimensions, and background distribution. Users can tune the patterns and structure that characterize the planted triclusters (subspaces) and how they interact (overlapping). Data quality can also be controlled, by defining the amount of missing, noise or errors. Furthermore, a benchmark of datasets resembling real data is made available, together with the corresponding triclustering solutions (planted triclusters) and generating parameters. Conclusions Triclustering evaluation using G-Tric provides the possibility to combine both intrinsic and extrinsic metrics to compare solutions that produce more reliable analyses. A set of predefined datasets, mimicking widely used three-way data and exploring crucial properties was generated and made available, highlighting G-Tric’s potential to advance triclustering state-of-the-art by easing the process of evaluating the quality of new triclustering approaches.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3784 ◽  
Author(s):  
Jameel Malik ◽  
Ahmed Elhayek ◽  
Didier Stricker

Hand shape and pose recovery is essential for many computer vision applications such as animation of a personalized hand mesh in a virtual environment. Although there are many hand pose estimation methods, only a few deep learning based algorithms target 3D hand shape and pose from a single RGB or depth image. Jointly estimating hand shape and pose is very challenging because none of the existing real benchmarks provides ground truth hand shape. For this reason, we propose a novel weakly-supervised approach for 3D hand shape and pose recovery (named WHSP-Net) from a single depth image by learning shapes from unlabeled real data and labeled synthetic data. To this end, we propose a novel framework which consists of three novel components. The first is the Convolutional Neural Network (CNN) based deep network which produces 3D joints positions from learned 3D bone vectors using a new layer. The second is a novel shape decoder that recovers dense 3D hand mesh from sparse joints. The third is a novel depth synthesizer which reconstructs 2D depth image from 3D hand mesh. The whole pipeline is fine-tuned in an end-to-end manner. We demonstrate that our approach recovers reasonable hand shapes from real world datasets as well as from live stream of depth camera in real-time. Our algorithm outperforms state-of-the-art methods that output more than the joint positions and shows competitive performance on 3D pose estimation task.


Author(s):  
Jonas Hein ◽  
Matthias Seibold ◽  
Federica Bogo ◽  
Mazda Farshad ◽  
Marc Pollefeys ◽  
...  

Abstract Purpose:  Tracking of tools and surgical activity is becoming more and more important in the context of computer assisted surgery. In this work, we present a data generation framework, dataset and baseline methods to facilitate further research in the direction of markerless hand and instrument pose estimation in realistic surgical scenarios. Methods:  We developed a rendering pipeline to create inexpensive and realistic synthetic data for model pretraining. Subsequently, we propose a pipeline to capture and label real data with hand and object pose ground truth in an experimental setup to gather high-quality real data. We furthermore present three state-of-the-art RGB-based pose estimation baselines. Results:  We evaluate three baseline models on the proposed datasets. The best performing baseline achieves an average tool 3D vertex error of 16.7 mm on synthetic data as well as 13.8 mm on real data which is comparable to the state-of-the art in RGB-based hand/object pose estimation. Conclusion:  To the best of our knowledge, we propose the first synthetic and real data generation pipelines to generate hand and object pose labels for open surgery. We present three baseline models for RGB based object and object/hand pose estimation based on RGB frames. Our realistic synthetic data generation pipeline may contribute to overcome the data bottleneck in the surgical domain and can easily be transferred to other medical applications.


2018 ◽  
Vol 4 (8) ◽  
pp. 98 ◽  
Author(s):  
Simone Bianco ◽  
Gianluigi Ciocca ◽  
Davide Marelli

Structure from Motion (SfM) is a pipeline that allows three-dimensional reconstruction starting from a collection of images. A typical SfM pipeline comprises different processing steps each of which tackles a different problem in the reconstruction pipeline. Each step can exploit different algorithms to solve the problem at hand and thus many different SfM pipelines can be built. How to choose the SfM pipeline best suited for a given task is an important question. In this paper we report a comparison of different state-of-the-art SfM pipelines in terms of their ability to reconstruct different scenes. We also propose an evaluation procedure that stresses the SfM pipelines using real dataset acquired with high-end devices as well as realistic synthetic dataset. To this end, we created a plug-in module for the Blender software to support the creation of synthetic datasets and the evaluation of the SfM pipeline. The use of synthetic data allows us to easily have arbitrarily large and diverse datasets with, in theory, infinitely precise ground truth. Our evaluation procedure considers both the reconstruction errors as well as the estimation errors of the camera poses used in the reconstruction.


2021 ◽  
Author(s):  
Fida Dankar ◽  
Mahmoud K. Ibrahim ◽  
Leila Ismail

BACKGROUND Synthetic datasets are gradually emerging as solutions for fast and inclusive health data sharing. Multiple synthetic data generators have been introduced in the last decade fueled by advancement in machine learning, yet their utility is not well understood. Few recent papers tried to compare the utility of synthetic data generators, each focused on different evaluation metrics and presented conclusions targeted at specific analysis. OBJECTIVE This work aims to understand the overall utility (referred to as quality) of four recent synthetic data generators by identifying multiple criteria for high-utility for synthetic data. METHODS We investigate commonly used utility metrics for masked data evaluation and classify them into criteria/categories depending on the function they attempt to preserve: attribute fidelity, bivariate fidelity, population fidelity, and application fidelity. Then we chose a representative metric from each of the identified categories based on popularity and consistency. The set of metrics together, referred to as quality criteria, are used to evaluate the overall utility of four recent synthetic data generators across 19 datasets of different sizes and feature counts. Moreover, correlations between the identified metrics are investigated in an attempt to streamline synthetic data utility. RESULTS Our results indicate that a non-parametric machine learning synthetic data generator (Synthpop) provides the best utility values across all quality criteria along with the highest stability. It displays the best overall accuracy in supervised machine learning and often agrees with real dataset on the learning model with the highest accuracy. On another front, our results suggest no strong correlation between the different metrics, which implies that all categories/dimensions are required when evaluating the overall utility of synthetic data. CONCLUSIONS The paper used four quality criteria to inform on the synthesizer with the best overall utility. The results are promising with small decreases in accuracy observed from the winning synthesizer when tested with real datasets (in comparison with models trained on real data). Further research into one (overall) quality measure would greatly help data holders in optimizing the utility of the released dataset.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Eckart Michaelsen ◽  
Stéphane Vujasinovic

Representative input data are a necessary requirement for the assessment of machine-vision systems. For symmetry-seeing machines in particular, such imagery should provide symmetries as well as asymmetric clutter. Moreover, there must be reliable ground truth with the data. It should be possible to estimate the recognition performance and the computational efforts by providing different grades of difficulty and complexity. Recent competitions used real imagery labeled by human subjects with appropriate ground truth. The paper at hand proposes to use synthetic data instead. Such data contain symmetry, clutter, and nothing else. This is preferable because interference with other perceptive capabilities, such as object recognition, or prior knowledge, can be avoided. The data are given sparsely, i.e., as sets of primitive objects. However, images can be generated from them, so that the same data can also be fed into machines requiring dense input, such as multilayered perceptrons. Sparse representations are preferred, because the author’s own system requires such data, and in this way, any influence of the primitive extraction method is excluded. The presented format allows hierarchies of symmetries. This is important because hierarchy constitutes a natural and dominant part in symmetry-seeing. The paper reports some experiments using the author’s Gestalt algebra system as symmetry-seeing machine. Additionally included is a comparative test run with the state-of-the-art symmetry-seeing deep learning convolutional perceptron of the PSU. The computational efforts and recognition performance are assessed.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Francesca Pizzorni Ferrarese ◽  
Flavio Simonetti ◽  
Roberto Israel Foroni ◽  
Gloria Menegaz

Validation and accuracy assessment are the main bottlenecks preventing the adoption of image processing algorithms in the clinical practice. In the classical approach, a posteriori analysis is performed through objective metrics. In this work, a different approach based on Petri nets is proposed. The basic idea consists in predicting the accuracy of a given pipeline based on the identification and characterization of the sources of inaccuracy. The concept is demonstrated on a case study: intrasubject rigid and affine registration of magnetic resonance images. Both synthetic and real data are considered. While synthetic data allow the benchmarking of the performance with respect to the ground truth, real data enable to assess the robustness of the methodology in real contexts as well as to determine the suitability of the use of synthetic data in the training phase. Results revealed a higher correlation and a lower dispersion among the metrics for simulated data, while the opposite trend was observed for pathologic ones. Results show that the proposed model not only provides a good prediction performance but also leads to the optimization of the end-to-end chain in terms of accuracy and robustness, setting the ground for its generalization to different and more complex scenarios.


2016 ◽  
Vol 57 ◽  
pp. 1-37 ◽  
Author(s):  
Simone Villa ◽  
Fabio Stella

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Furthermore, the performance achieved by non-stationary continuous time Bayesian networks is compared to that achieved by state-of-the-art algorithms on four real-world datasets, namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.


Author(s):  
Hoon Kim ◽  
Kangwook Lee ◽  
Gyeongjo Hwang ◽  
Changho Suh

Developing a computer vision-based algorithm for identifying dangerous vehicles requires a large amount of labeled accident data, which is difficult to collect in the real world. To tackle this challenge, we first develop a synthetic data generator built on top of a driving simulator. We then observe that the synthetic labels that are generated based on simulation results are very noisy, resulting in poor classification performance. In order to improve the quality of synthetic labels, we propose a new label adaptation technique that first extracts internal states of vehicles from the underlying driving simulator, and then refines labels by predicting future paths of vehicles based on a well-studied motion model. Via real-data experiments, we show that our dangerous vehicle classifier can reduce the missed detection rate by at least 18.5% compared with those trained with real data when time-to-collision is between 1.6s and 1.8s.


Author(s):  
Lei Feng ◽  
Bo An

Partial label learning deals with the problem where each training instance is assigned a set of candidate labels, only one of which is correct. This paper provides the first attempt to leverage the idea of self-training for dealing with partially labeled examples. Specifically, we propose a unified formulation with proper constraints to train the desired model and perform pseudo-labeling jointly. For pseudo-labeling, unlike traditional self-training that manually differentiates the ground-truth label with enough high confidence, we introduce the maximum infinity norm regularization on the modeling outputs to automatically achieve this consideratum, which results in a convex-concave optimization problem. We show that optimizing this convex-concave problem is equivalent to solving a set of quadratic programming (QP) problems. By proposing an upper-bound surrogate objective function, we turn to solving only one QP problem for improving the optimization efficiency. Extensive experiments on synthesized and real-world datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art partial label learning approaches.


2019 ◽  
Vol 9 (20) ◽  
pp. 4364 ◽  
Author(s):  
Frédéric Bousefsaf ◽  
Alain Pruski ◽  
Choubeila Maaoui

Remote pulse rate measurement from facial video has gained particular attention over the last few years. Research exhibits significant advancements and demonstrates that common video cameras correspond to reliable devices that can be employed to measure a large set of biomedical parameters without any contact with the subject. A new framework for measuring and mapping pulse rate from video is presented in this pilot study. The method, which relies on convolutional 3D networks, is fully automatic and does not require any special image preprocessing. In addition, the network ensures concurrent mapping by producing a prediction for each local group of pixels. A particular training procedure that employs only synthetic data is proposed. Preliminary results demonstrate that this convolutional 3D network can effectively extract pulse rate from video without the need for any processing of frames. The trained model was compared with other state-of-the-art methods on public data. Results exhibit significant agreement between estimated and ground-truth measurements: the root mean square error computed from pulse rate values assessed with the convolutional 3D network is equal to 8.64 bpm, which is superior to 10 bpm for the other state-of-the-art methods. The robustness of the method to natural motion and increases in performance correspond to the two main avenues that will be considered in future works.


Sign in / Sign up

Export Citation Format

Share Document