scholarly journals Correction to: Experimental and Numerical Study of a Geodesic Dome Under Static and Dynamic Loads and the Influence of Nodal Connections

Author(s):  
D. Rossot ◽  
R. D. Machado ◽  
N. Barbieri ◽  
K. F. de Lima
2020 ◽  
Vol 192 ◽  
pp. 04002
Author(s):  
Lihai Tan ◽  
Ting Ren ◽  
Xiaohan Yang ◽  
Xueqiu He

It has been well accepted by mining researchers that coal tends to undergo abrupt fracture under the coupling effect of dynamic and static loads. Hence, the study of influence of coupled static and dynamic loads on coal failure behaviour is meaningful for the understanding of coal burst. In this paper, PFC modelling of SHPB test is adopted to investigate the fracture mode and energy evolution of Australian hard coal under different combinations of pre-stress levels and impact velocities. Results have shown that high dynamic load will make the fracture mode and energy release of coal samples more violent even the static load is low. Although the strain energy increases with pre-stress level, the kinetic energy remains on a low level with the increase of pre-stress level when the impact velocity is 4 m/s.


1940 ◽  
Vol 44 (349) ◽  
pp. 44-73
Author(s):  
Wilhelm Kuech

Laminated materials incorporating plastics seem to be especially well suited lor highly stressed aircraft components, by reason of their good strength properties. Paper, fabric and wood veneers treated with plastics on a phenolic basis were tested with regard to their strength, especially in bending, shear, absorbed energy in impact bending, notching strength and in their resistance against moisture. Further, the behaviour of compressed plastics was studied at different temperatures under static and dynamic loads. A part of the research was extended to pure phenol resin and to thermoplastics based on methacrylate and polyvinylchloride. The bonding properties of laminated compressed plastics were established. Concluding, some experiments relating to the practical manufacture of aeroplane components are communicated.


2016 ◽  
Vol 121 (1235) ◽  
pp. 73-94 ◽  
Author(s):  
A. Castrichini ◽  
V. Hodigere Siddaramaiah ◽  
D.E. Calderon ◽  
J.E. Cooper ◽  
T. Wilson ◽  
...  

ABSTRACTA recent consideration in aircraft design is the use of folding wing-tips with the aim of enabling higher aspect ratio aircraft with less induced drag while also meeting airport gate limitations. This study investigates the effect of exploiting folding wing-tips in flight as a device to reduce both static and dynamic loads. A representative civil jet aircraft aeroelastic model was used to explore the effect of introducing a wing-tip device, connected to the wings with an elastic hinge, on the load behaviour. For the dynamic cases, vertical discrete gusts and continuous turbulence were considered. The effects of hinge orientation, stiffness, damping and wing-tip weight on the static and dynamic response were investigated. It was found that significant reductions in both the static and dynamic loads were possible. For the case considered, a 25% increase in span using folding wing-tips resulted in almost no increase in loads.


2014 ◽  
Vol 1061-1062 ◽  
pp. 748-750
Author(s):  
Heng Chen ◽  
Ke Sheng Ma

For socked and non-socketed piles in the different mechanical behavior under static and dynamic loads, the paper use ABAQUS to model, simulate the pile , the soil interlayer thickness between the bottom of the pile and bedrock are 2m, 4m under vertical load and Earthquake, cushion cap, pile and pile soil stress situation found non-socketed piles when the soil interlayer thickness within a certain range, the composite pile small subside under dynamic, static loads, the non-socketed piles can better take advantage of the pile soil has a good seismic performance in the earthquake.


2022 ◽  
Vol 1049 ◽  
pp. 108-113
Author(s):  
Nikolay Kurlaev ◽  
Ahmed Soliman Mohamed Sherif ◽  
Nikolay Ryngach

Bellows are a cylindrical shell with a corrugated part, widely used in aviation engineering as a movable sealing element to balance pressure and temperature differences, which ensure continuous and accurate system operation. The use of bellows expansion joints provides reliable and effective protection of pipelines from static and dynamic loads arising from deformations and vibration. Welded-edge bellows are a popular choice for regulating and controlling fuel supply in aircraft devices. The ability of the compensator to perceive deformations is determined by its assigned operating time, which describes how many cycles, and with what amplitude, the bellows compensator perceives without damage. A method for stamping bellows from tubular billets by using magnetic-pulse field in rigid dies, including sequential shaping of corrugations by distributing the internal magnetic pressure with axial movement of the free end of a tubular billet, characterized in that the material of the tubular billet for shaping corrugations is selected in accordance with its relative elongation.


2018 ◽  
Vol 174 ◽  
pp. 04003 ◽  
Author(s):  
Tomasz Maleska ◽  
Damian Beben

The design codes and calculation methods related to the corrugated steel plate (CSP) bridges and culverts say only on the minimum soil height. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing the vehicles), such approach seems to be reasonable. However, it is important to know how the CSP bridges with high the soil covers behave under the seismic loads. This paper is presented the result of numerical study of CSP bridge with different high cover under seismic excitation. The analysed CSP railway bridge in the cross section has two closed pipe-arches. The span of shells is 4.40 m and the height of shells is 2.80 m. The load-carrying structure was constructed as two shells assembled from CSP sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The real soil cover depth over the CSP structure (including ballast, blanket and backfill) equals 2.40 m. In this study two heights of soil cover were analysed (2.40 m and 5.00 m). Numerical analysis was conducted using the DIANA program based on finite element method (FEM). A linear model with El Centro records and Time History was used to analyse the problem.


Sign in / Sign up

Export Citation Format

Share Document