scholarly journals Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Youning Gong ◽  
Zhitao Lin ◽  
Yue-Xing Chen ◽  
Qasim Khan ◽  
Cong Wang ◽  
...  

AbstractIn recent years, emerging two-dimensional (2D) platinum diselenide (PtSe2) has quickly attracted the attention of the research community due to its novel physical and chemical properties. For the past few years, increasing research achievements on 2D PtSe2 have been reported toward the fundamental science and various potential applications of PtSe2. In this review, the properties and structure characteristics of 2D PtSe2 are discussed at first. Then, the recent advances in synthesis of PtSe2 as well as their applications are reviewed. At last, potential perspectives in exploring the application of 2D PtSe2 are reviewed.

Nanoscale ◽  
2021 ◽  
Author(s):  
Bowen Li ◽  
Jiazhong Geng ◽  
Haoqiang Ai ◽  
youchao Kong ◽  
Haoyun Bai ◽  
...  

Two-dimensional (2D) materials have attracted increasing interest in the past decades due to their unique physical and chemical properties for diverse applications. In this work, we present a first-principle design...


Nanoscale ◽  
2021 ◽  
Author(s):  
Mianzeng Zhong ◽  
Haotong Meng ◽  
Zhihui Ren ◽  
Le Huang ◽  
Juehan Yang ◽  
...  

As a new two-dimensional elemental layered semiconductor, black phosphorus (b-P) has received tremendous attentions due to its excellent physical and chemical properties, and has potential applications in the fields of...


Nanoscale ◽  
2020 ◽  
Vol 12 (43) ◽  
pp. 21971-21987
Author(s):  
Qicheng Zhang ◽  
Wenchao Peng ◽  
Yang Li ◽  
Fengbao Zhang ◽  
Xiaobin Fan

Over the past several decades, nanomaterials have been extensively studied owing to having a series of unique physical and chemical properties that exceed those of conventional bulk materials.


2019 ◽  
Vol 7 (39) ◽  
pp. 22475-22486 ◽  
Author(s):  
Carlos Gibaja ◽  
Mhamed Assebban ◽  
Iñigo Torres ◽  
Michael Fickert ◽  
Roger Sanchis-Gual ◽  
...  

Antimonene, a novel group 15 two-dimensional material, is attracting great attention due to its outstanding physical and chemical properties.


2019 ◽  
Vol 7 (39) ◽  
pp. 12312-12320 ◽  
Author(s):  
Xiaoyong Yang ◽  
Deobrat Singh ◽  
Zhitong Xu ◽  
Ziwei Wang ◽  
Rajeev Ahuja

Motivated by the extraordinary physical and chemical properties of Janus transition-metal dichalcogenides (TMDs) due to the change of the crystal field originating from their asymmetry structures, the electronic and optical properties of the MoSeTe monolayer in 2H and 1T phases are systematically studied by first-principles calculations, and a detailed comparison with the parental MoSe2 and MoTe2 monolayer is made.


2018 ◽  
Vol 9 (15) ◽  
pp. 3623-3637 ◽  
Author(s):  
Xiubing Huang ◽  
Guixia Zhao ◽  
Ge Wang ◽  
John T. S. Irvine

Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity).


2020 ◽  
Vol 36 (4) ◽  
pp. 493-511 ◽  
Author(s):  
Juan C. Ruiz-Cornejo ◽  
David Sebastián ◽  
Maria J. Lázaro

AbstractCarbon nanofibers (CNFs) have shown great potential in multiple applications. Their versatility is derived from the possibility of tuning their physical and chemical properties. CNFs can be synthesized using two main methods: the catalytic decomposition of carbon precursors or the electrospinning and carbonization of polymers. The most appropriate method relies on the desired characteristics of the CNFs. Some of their applications include the synthesis of catalysts and catalytic supports, as electrodes for fuel cell devices, in hydrogen storage systems, and in functional nanocomposites. In this review, recent advances in the synthesis and potential applications of CNFs are examined.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Maxim K. Rabchinskii ◽  
Victor V. Sysoev ◽  
Sergei A. Ryzhkov ◽  
Ilya A. Eliseyev ◽  
Dina Yu. Stolyarova ◽  
...  

Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qian Wang ◽  
Lin Zhang ◽  
Xuejuan Liu ◽  
Sha Li

Two-dimensional (2D) layered semiconductors are current research hotspots on account of their wide variety of applications in electronics and optoelectronics due to their particular ultrathin nature. In this review, the band alignment engineering in heterojunctions composed of 2D van der Waals (vdW) layered semiconductors and their device applications in optoelectronics are provided. Various approaches that induced adjustability of vdW heterojunctions are summarized, mainly including composition and thickness modulations, strain, and electric fields. Furthermore, their perspectives on future developments in optoelectronics and electronics devices based on the newly unique physical and chemical properties are outlined.


Sign in / Sign up

Export Citation Format

Share Document