scholarly journals A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mandana Tavakolian ◽  
Seid Mahdi Jafari ◽  
Theo G. M. van de Ven

Abstract As the most abundant biopolymer on the earth, cellulose has recently gained significant attention in the development of antibacterial biomaterials. Biodegradability, renewability, strong mechanical properties, tunable aspect ratio, and low density offer tremendous possibilities for the use of cellulose in various fields. Owing to the high number of reactive groups (i.e., hydroxyl groups) on the cellulose surface, it can be readily functionalized with various functional groups, such as aldehydes, carboxylic acids, and amines, leading to diverse properties. In addition, the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure, such as proteins, polymers, metal nanoparticles, and antibiotics. There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents. However, little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility. In this study, we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials. Despite the high effectiveness of surface-modified cellulosic antibacterial materials, more studies on their mechanism of action, the relationship between their properties and their effectivity, and more in vivo studies are required.

1999 ◽  
Vol 14 (5) ◽  
pp. 2092-2095 ◽  
Author(s):  
M. Y. Han ◽  
W. Huang ◽  
C. H. Quek ◽  
L. M. Gan ◽  
C. H. Chew ◽  
...  

Highly photostable CdS nanoparticles modified with an alkyl group were prepared by an improved microemulsion technique using hexanethiol as cosurfactant. The surface-modified CdS nanoparticles catalyzed the photo-oxidation of 4-chlorophenol via continuously bubbling oxygen under uv light. The photocatalytic oxidation activity of the CdS nanoparticles was enhanced due to the formation of their compact CdS cores with strong chemical surface modification by heat treatment.


Author(s):  
Vamsi Krishna Balla ◽  
Mitun Das ◽  
Someswar Datta ◽  
Biswanath Kundu

This chapter examines the importance of surface characteristics such as microstructure, composition, crystallographic texture, and surface free energy in achieving desired biocompatibility and tribological properties thereby improving in vivo life of artificial articulating implants. Current implants often fail prematurely due to inadequate mechanical, tribological, biocompatibility, and osseointegration properties, apart from issues related to design and surgical procedures. For long-term in vivo stability, artificial implants intended for articulating joint replacement must exhibit long-term stable articulation surface without stimulating undesirable in vivo effects. Since the implant's surface plays a vital and decisive role in their response to biological environment, and vice versa, surface modification of implants assumes a significant importance. Therefore, overview on important surface modification techniques, their capabilities, properties of modified surfaces/implants are presented in the chapter. The clinical performance of surface modified implants and new surfaces for potential next-generation articulating implant applications are discussed at the end.


2018 ◽  
Vol 25 (36) ◽  
pp. 4740-4757 ◽  
Author(s):  
Ashita Sharma ◽  
Mandeep Kaur ◽  
Jatinder Kaur Katnoria ◽  
Avinash Kaur Nagpal

Polyphenols are a group of water-soluble organic compounds, mainly of natural origin. The compounds having about 5-7 aromatic rings and more than 12 phenolic hydroxyl groups are classified as polyphenols. These are the antioxidants which protect the body from oxidative damage. In plants, they are the secondary metabolites produced as a defense mechanism against stress factors. Antioxidant property of polyphenols is suggested to provide protection against many diseases associated with reactive oxygen species (ROS), including cancer. Various studies carried out across the world have suggested that polyphenols can inhibit the tumor generation, induce apoptosis in cancer cells and interfere in progression of tumors. This group of wonder compounds is present in surplus in natural plants and food products. Intake of polyphenols through diet can scavenge ROS and thus can help in cancer prevention. The plant derived products can also be used along with conventional chemotherapy to enhance the chemopreventive effects. The present review focuses on various in vitro and in vivo studies carried out to assess the anti-carcinogenic potential of polyphenols present in our food. Also, the pathways involved in cancer chemopreventive effects of various subclasses (flavonoids, lignans, stilbenes and phenolic acids) of polyphenols are discussed.


Sign in / Sign up

Export Citation Format

Share Document