scholarly journals Sorting Gold and Sand (Silica) Using Atomic Force Microscope-Based Dielectrophoresis

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chungman Kim ◽  
Sunghoon Hong ◽  
Dongha Shin ◽  
Sangmin An ◽  
Xingcai Zhang ◽  
...  

AbstractAdditive manufacturing–also known as 3D printing–has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures. However, the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir, which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle. Here, we propose a dielectrophoresis (DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork (QTF)-atomic force microscope (AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions. We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation, which confirmed the surface-enhanced Raman spectroscopy (SERS). To validate the scheme, we also performed a simulation for the system and found qualitative agreement with the experimental results. The method that combines DEP, pipette-based AFM, and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning, materials sorting, and diverse advanced applications. "Image missing"

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1794 ◽  
Author(s):  
Sangmin An ◽  
Wonho Jhe

We introduce a nanopipette/quartz tuning fork (QTF)–atomic force microscope (AFM) for nanolithography and a nanorod/QTF–AFM for nanoscratching with in situ detection of shear dynamics during performance. Capillary-condensed nanoscale water meniscus-mediated and electric field-assisted small-volume liquid ejection and nanolithography in ambient conditions are performed at a low bias voltage (~10 V) via a nanopipette/QTF–AFM. We produce and analyze Au nanoparticle-aggregated nanowire by using nanomeniscus-based particle stacking via a nanopipette/QTF–AFM. In addition, we perform a nanoscratching technique using in situ detection of the mechanical interactions of shear dynamics via a nanorod/QTF–AFM with force sensor capability and high sensitivity.


Nanoscale ◽  
2012 ◽  
Vol 4 (20) ◽  
pp. 6493 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Gunn Kim ◽  
Manhee Lee ◽  
Yonghee Kim ◽  
...  

2013 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Soyoung Kwon ◽  
Kunyoung Lee ◽  
Bongsu Kim ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3234
Author(s):  
Soo Min Kim ◽  
Taek Lee ◽  
Yeong-Gyu Gil ◽  
Ga Hyeon Kim ◽  
Chulhwan Park ◽  
...  

In the present study, we propose a novel biosensor platform using a gold-tellurium (Au–Te) nanoworm structure through surface-enhanced Raman spectroscopy (SERS). Au–Tenanoworm was synthesized by spontaneous galvanic replacement of sacrificial Te nanorods templated with Au (III) cations under ambient conditions. The fabricated Au–Te nanoworm exhibited an interconnected structure of small spherical nanoparticles and was found to be effective at enhancing Raman scattering. The Au–Te nanoworm-immobilized substrate exhibited the ability to detect thyroxine using an aptamer-tagged DNA three-way junction (3WJ) and glycoprotein 120 (GP120) human immunodeficiency virus (HIV) using an antibody. The modified substrates were investigated by scanning electron microscopy and atomic force microscopy (AFM). The optimal Au–Te nanoworm concentration and immobilization time for the thyroxine biosensor platform were further determined by SERS experimentation. Thus, the present study showed that the Au–Te nanoworm structure could be applied to various biosensor platforms.


2012 ◽  
Vol 12 (7) ◽  
pp. 5754-5758
Author(s):  
Sangmin An ◽  
Kunyoung Lee ◽  
Geol Moon ◽  
Wan Bak ◽  
Gunn Kim ◽  
...  

2011 ◽  
Vol 23 (19) ◽  
pp. 2181-2184 ◽  
Author(s):  
Justice M. P. Alaboson ◽  
Qing Hua Wang ◽  
Joshua A. Kellar ◽  
Joohee Park ◽  
Jeffrey W. Elam ◽  
...  

Author(s):  
Brent A. Nelson ◽  
Tanya L. Wright ◽  
William P. King ◽  
Paul E. Sheehan ◽  
Lloyd J. Whitman

The manufacture of nanoscale devices is at present constrained by the resolution limits of optical lithography and the high cost of electron beam lithography. Furthermore, traditional silicon fabrication techniques are quite limited in materials compatibility and are not well-suited for the manufacture of organic and biological devices. One nanomanufacturing technique that could overcome these drawbacks is dip pen nanolithography (DPN), in which a chemical-coated atomic force microscope (AFM) tip deposits molecular ‘inks’ onto a substrate [1]. DPN has shown resolution as good as 5 nm [2] and has been performed with a large number of molecules, but has limitations. For molecules to ink the surface they must be mobile at room temperature, limiting the inks that can be used, and since the inks must be mobile in ambient conditions, there is no way to stop the deposition while the tip is in contact with the substrate. In-situ imaging of deposited molecules therefore causes contamination of the deposited features.


2016 ◽  
Vol 84 (6) ◽  
pp. 478-482 ◽  
Author(s):  
Yingzi Li ◽  
Liwen Zhang ◽  
Guanqiao Shan ◽  
Zihang Song ◽  
Rui Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document