scholarly journals The ferrocenium/ferrocene couple: a versatile redox switch

ChemTexts ◽  
2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Luigi Fabbrizzi

Abstract Woodward and co-workers in 1952 characterised the unique structural features of ferrocene (the first sandwich compound), demonstrated its aromatic nature and observed that on treatment with mild oxidising agents (aqueous Ag2SO4, p-benzoquinone in organic solvents) the orange solution of ferrocene (Fc) turned blue due to the formation of ferrocenium (Fc+). A few months later, the one-electron Fc/Fc+ redox change was characterised polarographically by Page and Wilkinson with E1/2 = 0.31 V vs SCE (0.56 V vs NHE) in ethanol/water 9:1. Since then ferrocene has become an icon of organometallic electrochemistry. Owing to the stability of its molecular framework, to the ease of functionalisation at the cyclopentadienyl rings and to the fast, reversible and kinetically uncomplicated Fc/Fc+ redox change, ferrocene has been used as a building block for the design of switchable functional systems. In this review, we will consider (1) electrochemical sensors for metal ions, anions and metal–anion pairs operating through the Fc/Fc+ redox change, (2) ferrocene-based redox switches of fluorescence and (3) cross-transport of electrons and anions through a liquid membrane mediated by lipophilic ferrocene derivatives. Graphic abstract

1975 ◽  
Vol 34 (02) ◽  
pp. 426-444 ◽  
Author(s):  
J Kahan ◽  
I Nohén

SummaryIn 4 collaborative trials, involving a varying number of hospital laboratories in the Stockholm area, the coagulation activity of different test materials was estimated with the one-stage prothrombin tests routinely used in the laboratories, viz. Normotest, Simplastin-A and Thrombotest. The test materials included different batches of a lyophilized reference plasma, deep-frozen specimens of diluted and undiluted normal plasmas, and fresh and deep-frozen specimens from patients on long-term oral anticoagulant therapy.Although a close relationship was found between different methods, Simplastin-A gave consistently lower values than Normotest, the difference being proportional to the estimated activity. The discrepancy was of about the same magnitude on all the test materials, and was probably due to a divergence between the manufacturers’ procedures used to set “normal percentage activity”, as well as to a varying ratio of measured activity to plasma concentration. The extent of discrepancy may vary with the batch-to-batch variation of thromboplastin reagents.The close agreement between results obtained on different test materials suggests that the investigated reference plasma could be used to calibrate the examined thromboplastin reagents, and to compare the degree of hypocoagulability estimated by the examined PIVKA-insensitive thromboplastin reagents.The assigned coagulation activity of different batches of the reference plasma agreed closely with experimentally obtained values. The stability of supplied batches was satisfactory as judged from the reproducibility of repeated measurements. The variability of test procedures was approximately the same on different test materials.


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Ginger Egberts ◽  
Fred Vermolen ◽  
Paul van Zuijlen

AbstractTo deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $${{\mathcal {O}}}(h^2)$$ O ( h 2 ) . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Johannes M. Herrmann ◽  
Jan Riemer

AbstractThe mitochondrial complex I serves as entry point for NADH into the electron transport chain. In animals, fungi and plants, additional NADH dehydrogenases carry out the same electron transfer reaction, however they do not pump protons. The apoptosis inducing factor (AIF, AIFM1 in humans) is a famous member of this group as it was the first pro-apoptotic protein identified that can induce caspase-independent cell death. Recent studies on AIFM1 and the NADH dehydrogenase Nde1 of baker’s yeast revealed two independent and experimentally separable activities of this class of enzymes: On the one hand, these proteins promote the functionality of mitochondrial respiration in different ways: They channel electrons into the respiratory chain and, at least in animals, promote the import of Mia40 (named MIA40 or CHCHD4 in humans) and the assembly of complex I. On the other hand, they can give rise to pro-apoptotic fragments that are released from the mitochondria to trigger cell death. Here we propose that AIFM1 and Nde1 serve as conserved redox switches which measure metabolic conditions on the mitochondrial surface and translate it into a binary life/death decision. This function is conserved among eukaryotic cells and apparently used to purge metabolically compromised cells from populations.


2021 ◽  
Vol 22 (4) ◽  
pp. 2030
Author(s):  
Hela Ferjani ◽  
Hammouda Chebbi ◽  
Mohammed Fettouhi

The new organic–inorganic compound (C6H9N2)2BiCl5 (I) has been grown by the solvent evaporation method. The one-dimensional (1D) structure of the allylimidazolium chlorobismuthate (I) has been determined by single crystal X-ray diffraction. It crystallizes in the centrosymmetric space group C2/c and consists of 1-allylimidazolium cations and (1D) chains of the anion BiCl52−, built up of corner-sharing [BiCl63−] octahedra which are interconnected by means of hydrogen bonding contacts N/C–H⋯Cl. The intermolecular interactions were quantified using Hirshfeld surface analysis and the enrichment ratio established that the most important role in the stability of the crystal structure was provided by hydrogen bonding and H···H interactions. The highest value of E was calculated for the contact N⋯C (6.87) followed by C⋯C (2.85) and Bi⋯Cl (2.43). These contacts were favored and made the main contribution to the crystal packing. The vibrational modes were identified and assigned by infrared and Raman spectroscopy. The optical band gap (Eg = 3.26 eV) was calculated from the diffuse reflectance spectrum and showed that we can consider the material as a semiconductor. The density functional theory (DFT) has been used to determine the calculated gap, which was about 3.73 eV, and to explain the electronic structure of the title compound, its optical properties, and the stability of the organic part by the calculation of HOMO and LUMO energy and the Fukui indices.


2003 ◽  
Vol 14 (08) ◽  
pp. 1087-1105 ◽  
Author(s):  
ZHONGCHENG WANG ◽  
YONGMING DAI

A new twelfth-order four-step formula containing fourth derivatives for the numerical integration of the one-dimensional Schrödinger equation has been developed. It was found that by adding multi-derivative terms, the stability of a linear multi-step method can be improved and the interval of periodicity of this new method is larger than that of the Numerov's method. The numerical test shows that the new method is superior to the previous lower orders in both accuracy and efficiency and it is specially applied to the problem when an increasing accuracy is requested.


2013 ◽  
Vol 11 (11) ◽  
pp. 1860-1873 ◽  
Author(s):  
Magdalena Nowacka ◽  
Łukasz Klapiszewski ◽  
Małgorzata Norman ◽  
Teofil Jesionowski

AbstractAdvanced silica/lignin hybrid biomaterials were obtained using hydrated or fumed silicas (Aerosil®200) and Kraft lignin as precursors, which is a cheap and biodegradable natural polymer. To extend the possible range of applications, the silicas were first modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and then with Kraft lignin, which had been oxidized with sodium periodate. The SiO2/lignin hybrids and precursors were characterised by means of determination of their physicochemical and dispersive-morphological properties. The effectiveness of silica binding to lignin was verified by FT-IR spectroscopy. The zeta potential value provides relevant information regarding interactions between colloid particles. Measurement of the zeta potential values enabled an indirect assessment of stability for the studied hybrid systems. Determination of zeta potential and density of surface charge also permitted the quantitative analysis of changes in surface charge, and indirectly confirmed the effectiveness of the proposed method for synthesis of SiO2/lignin hybrid materials. A particularly attractive feature for practical use is their stability, especially electrokinetic stability. It is expected that silica/lignin hybrids will find a wide range of applications (polymer fillers, biosorbents, electrochemical sensors), as they combine the unique properties of silica with the specific structural features of lignin. This makes these hybrids biomaterials advanced and multifunctional.


2011 ◽  
Vol 66 (3) ◽  
pp. 269-274
Author(s):  
Samir F. Matar

We address the changes in the electronic structure brought by the insertion of hydrogen into ThCo leading to the experimentally observed ThCoH4. Full geometry optimization positions the hydrogen in three sites stabilized in the expanded intermetallic matrix. From a Bader charge analysis, hydrogen is found to be in a narrow iono-covalent (~−0.6) to covalent (~−0.3) bonding which should enable site-selective desorption. The overall chemical picture shows a positively charged Thδ+ with the negative charge redistributed over a complex anion {CoH4}δ− with δ~1.8. Nevertheless this charge transfer remains far from the one in the more ionic hydridocobaltate anion CoH54− in Mg2CoH5, due to the largely electropositive character of Mg.


NANO ◽  
2010 ◽  
Vol 05 (01) ◽  
pp. 53-60 ◽  
Author(s):  
XIAOLIANG WANG ◽  
XIANG LI ◽  
ELEANOR STRIDE ◽  
MOHAN EDIRISINGHE

Naturally derived biopolymers have been widely used for biomedical applications such as drug carriers, wound dressings, and tissue engineering scaffolds. Chitosan is a typical polysaccharide of great interest due to its biocompatibility and film-formability. Chitosan membranes with controllable porous structures also have significant potential in membrane chromatography. Thus, the processing of membranes with porous nanoscale structures is of great importance, but it is also challenging and this has limited the application of these membranes to date. In this study, with the aid of a carefully selected surfactant, polyethyleneglycol stearate-40, chitosan membranes with a well controlled nanoscale structure were successfully prepared. Additional control over the membrane structure was obtained by exposing the suspension to high intensity, low frequency ultrasound. It was found that the concentration of chitosan/surfactant ratio and the ultrasound exposure conditions affect the structural features of the membranes. The stability of nanopores in the membrane was improved by intensive ultrasonication. Furthermore, the stability of the blended suspensions and the intermolecular interactions between chitosan and the surfactant were investigated using scanning electron microscope and Fourier transform infrared spectroscopy (FTIR) analysis, respectively. Hydrogen bonds and possible reaction sites for molecular interactions in the two polymers were also confirmed by FTIR analysis.


1996 ◽  
Vol 28 (02) ◽  
pp. 540-566 ◽  
Author(s):  
Peter G. Harrison ◽  
Edwige Pitel

We derive expressions for the generating function of the equilibrium queue length probability distribution in a single server queue with general service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. For the case of first come first served queueing discipline for the positive customers, we compare the killing strategies in which either the last customer in the queue or the one in service is removed by a negative customer. We then consider preemptive-restart with resampling last come first served queueing discipline for the positive customers, combined with the elimination of the customer in service by a negative customer—the case of elimination of the last customer yields an analysis similar to first come first served discipline for positive customers. The results show different generating functions in contrast to the case where service times are exponentially distributed. This is also reflected in the stability conditions. Incidently, this leads to a full study of the preemptive-restart with resampling last come first served case without negative customers. Finally, approaches to solving the Fredholm integral equation of the first kind which arises, for instance, in the first case are considered as well as an alternative iterative solution method.


Sign in / Sign up

Export Citation Format

Share Document