FABRICATION OF NANOPOROUS CHITOSAN MEMBRANES

NANO ◽  
2010 ◽  
Vol 05 (01) ◽  
pp. 53-60 ◽  
Author(s):  
XIAOLIANG WANG ◽  
XIANG LI ◽  
ELEANOR STRIDE ◽  
MOHAN EDIRISINGHE

Naturally derived biopolymers have been widely used for biomedical applications such as drug carriers, wound dressings, and tissue engineering scaffolds. Chitosan is a typical polysaccharide of great interest due to its biocompatibility and film-formability. Chitosan membranes with controllable porous structures also have significant potential in membrane chromatography. Thus, the processing of membranes with porous nanoscale structures is of great importance, but it is also challenging and this has limited the application of these membranes to date. In this study, with the aid of a carefully selected surfactant, polyethyleneglycol stearate-40, chitosan membranes with a well controlled nanoscale structure were successfully prepared. Additional control over the membrane structure was obtained by exposing the suspension to high intensity, low frequency ultrasound. It was found that the concentration of chitosan/surfactant ratio and the ultrasound exposure conditions affect the structural features of the membranes. The stability of nanopores in the membrane was improved by intensive ultrasonication. Furthermore, the stability of the blended suspensions and the intermolecular interactions between chitosan and the surfactant were investigated using scanning electron microscope and Fourier transform infrared spectroscopy (FTIR) analysis, respectively. Hydrogen bonds and possible reaction sites for molecular interactions in the two polymers were also confirmed by FTIR analysis.

2015 ◽  
Vol 27 ◽  
pp. 586-591 ◽  
Author(s):  
Valéria S. Oliveira ◽  
Sueli Rodrigues ◽  
Fabiano A.N. Fernandes

2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

2020 ◽  
pp. 13-23
Author(s):  
Natalya Kornova ◽  
A. Krylov

The article presents results of a study on the effectiveness of using lowfrequency ultrasound and photochromotherapy in the complex treatment of patients with chronic bacterial and viral rhinosinusitis. The study involved 69 people aged 18 to 55 years: 39 (56.83 %) women and 30 (45.11 %) men with chronic rhinosinusitis during the period of clinical exacerbation and concomitant chronic tonsillitis without exacerbation. All patients included in the study underwent X-ray examination or computed tomography and magnetic resonance imaging of the paranasal sinuses. 100 % of the patients were examined for the presence of antibodies to Human gammaherpesvirus 4 (ELISA), had study of blood serum for IgM and IgG and test to determine the avidity of Ig G antibodies to γ-herpesviruses. The obtained data indicate the effectiveness of including low-frequency ultrasound and photochromotherapy in the complex treatment of patients with chronic rhinosinusitis and concomitant chronic tonsillitis of bacterial and viral nature without exacerbation.


Author(s):  
Mohd Razealy Anuar ◽  
Mohamed Hussein Abdurahman ◽  
Nor Irwin Basir ◽  
Ahmad Zuhairi Abdullah

2003 ◽  
Vol 29 (5) ◽  
pp. S120-S121
Author(s):  
S. Bashardoust Tajali ◽  
S. Kazemi ◽  
A. Azari ◽  
A. Shahverdi ◽  
M. Jabal Ameli

2005 ◽  
Vol 288 (6) ◽  
pp. R1637-R1648 ◽  
Author(s):  
Peter E. Hammer ◽  
J. Philip Saul

A mathematical model of the arterial baroreflex was developed and used to assess the stability of the reflex and its potential role in producing the low-frequency arterial blood pressure oscillations called Mayer waves that are commonly seen in humans and animals in response to decreased central blood volume. The model consists of an arrangement of discrete-time filters derived from published physiological studies, which is reduced to a numerical expression for the baroreflex open-loop frequency response. Model stability was assessed for two states: normal and decreased central blood volume. The state of decreased central blood volume was simulated by decreasing baroreflex parasympathetic heart rate gain and by increasing baroreflex sympathetic vaso/venomotor gains as occurs with the unloading of cardiopulmonary baroreceptors. For the normal state, the feedback system was stable by the Nyquist criterion (gain margin = 0.6), but in the hypovolemic state, the gain margin was small (0.07), and the closed-loop frequency response exhibited a sharp peak (gain of 11) at 0.07 Hz, the same frequency as that observed for arterial pressure fluctuations in a group of healthy standing subjects. These findings support the theory that stresses affecting central blood volume, including upright posture, can reduce the stability of the normally stable arterial baroreflex feedback, leading to resonance and low-frequency blood pressure waves.


2003 ◽  
Vol 478 ◽  
pp. 1-10 ◽  
Author(s):  
KRISTIAN B. DYSTHE ◽  
KARSTEN TRULSEN ◽  
HARALD E. KROGSTAD ◽  
HERVÉ SOCQUET-JUGLARD

Numerical simulations of the evolution of gravity wave spectra of fairly narrow bandwidth have been performed both for two and three dimensions. Simulations using the nonlinear Schrödinger (NLS) equation approximately verify the stability criteria of Alber (1978) in the two-dimensional but not in the three-dimensional case. Using a modified NLS equation (Trulsen et al. 2000) the spectra ‘relax’ towards a quasi-stationary state on a timescale (ε2ω0)−1. In this state the low-frequency face is steepened and the spectral peak is downshifted. The three-dimensional simulations show a power-law behaviour ω−4 on the high-frequency side of the (angularly integrated) spectrum.


Sign in / Sign up

Export Citation Format

Share Document