Relationship Between the Walking Velocity Relative to the Slip Velocity and the Corrective Response

Author(s):  
Keisuke Hirata ◽  
Takanori Kokubun ◽  
Taku Miyazawa ◽  
Hiroki Hanawa ◽  
Keisuke Kubota ◽  
...  
2019 ◽  
Vol 7 (1) ◽  
pp. 387-396 ◽  
Author(s):  
Mohmmadraiyan M. Munshi ◽  
Ashok R. Patel ◽  
Gunamani Deheri
Keyword(s):  

2007 ◽  
Vol 35 (4) ◽  
pp. 276-299 ◽  
Author(s):  
J. C. Cho ◽  
B. C. Jung

Abstract Tread pattern wear is predicted by using an explicit finite element model (FEM) and compared with the indoor drum test results under a set of actual driving conditions. One pattern is used to determine the wear rate equation, which is composed of slip velocity and tangential stress under a single driving condition. Two other patterns with the same size (225/45ZR17) and profile are used to be simulated and compared with the indoor wear test results under the actual driving conditions. As a study on the rubber wear rate equation, trial wear rates are assumed by several constitutive equations and each trial wear rate is integrated along time to yield the total accumulated wear under a selected single cornering condition. The trial constitutive equations are defined by independently varying each exponent of slip velocity and tangential stress. The integrated results are compared with the indoor test results, and the best matching constitutive equation for wear is selected for the following wear simulation of two other patterns under actual driving conditions. Tens of thousands of driving conditions of a tire are categorized into a small number of simplified conditions by a suggested simplification procedure which considers the driving condition frequency and weighting function. Both of these simplified conditions and the original actual conditions are tested on the indoor drum test machines. The two results can be regarded to be in good agreement if the deviation that exists in the data is mainly due to the difference in the test velocity. Therefore, the simplification procedure is justified. By applying the selected wear rate equation and the simplified driving conditions to the explicit FEM simulation, the simulated wear results for the two patterns show good match with the actual indoor wear results.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


2021 ◽  
pp. 026921552199052
Author(s):  
Zonglei Zhou ◽  
Ruzhen Zhou ◽  
Wen Wei ◽  
Rongsheng Luan ◽  
Kunpeng Li

Objective: To conduct a systematic review evaluating the effects of music-based movement therapy on motor function, balance, gait, mental health, and quality of life among individuals with Parkinson’s disease. Data sources: A systematic search of PubMed, Embase, Cochrane Library, Web of Science, PsycINFO, CINAHL, and Physiotherapy Evidence Database was carried out to identify eligible papers published up to December 10, 2020. Review methods: Literature selection, data extraction, and methodological quality assessment were independently performed by two investigators. Publication bias was determined by funnel plot and Egger’s regression test. “Trim and fill” analysis was performed to adjust any potential publication bias. Results: Seventeen studies involving 598 participants were included in this meta-analysis. Music-based movement therapy significantly improved motor function (Unified Parkinson’s Disease Rating Scale motor subscale, MD = −5.44, P = 0.002; Timed Up and Go Test, MD = −1.02, P = 0.001), balance (Berg Balance Scale, MD = 2.02, P < 0.001; Mini-Balance Evaluation Systems Test, MD = 2.95, P = 0.001), freezing of gait (MD = −2.35, P = 0.039), walking velocity (MD = 0.18, P < 0.001), and mental health (SMD = −0.38, P = 0.003). However, no significant effects were observed on gait cadence, stride length, and quality of life. Conclusion: The findings of this study show that music-based movement therapy is an effective treatment approach for improving motor function, balance, freezing of gait, walking velocity, and mental health for patients with Parkinson’s disease.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoji Onagawa ◽  
Kazutoshi Kudo

AbstractHumans are often required to plan/execute movements in the presence of multiple motor targets simultaneously. Under such situations, it is widely confirmed that humans frequently initiate movements towards the weighted average direction of distinct motor plans toward each potential target. However, in situations where the potential targets change in a step-by-step manner, the strategy to proceed towards the weighted average direction at each time could be sub-optimal in light of the costs of the corrective response. Herein, we tested the sensorimotor strategy followed during a step-by-step reduction of potential goals. To test the hypothesis, we compared the corrective responses when the number of targets went from three to two, and when the number of targets went from three to one at the same time. As the results, weak corrections were confirmed when the number of targets was reduced from three to two. Moreover, the corrective responses when the number of targets went from three to two was smaller than the average behavior estimated from the corrective responses when the number of targets went from three to one at the same time. This pattern of corrective responses reflects the suppression of unnecessary corrections that generate noise and cost to the control system. These results suggest that the corrective responses are flexibly modulated depending on the necessity, and cannot be explained by weighted average behavior.


AIAA Journal ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Irina Bassina ◽  
Mikhail Strelets ◽  
Philippe R. Spalart

2007 ◽  
Vol 22 (1) ◽  
pp. 163-166
Author(s):  
Takayuki SHIMOJU ◽  
Hiroaki TANI
Keyword(s):  

1978 ◽  
Vol &NA; (132) ◽  
pp. 140???144 ◽  
Author(s):  
ROY D. CROWINSHIELD ◽  
RICHARD A. BRAND ◽  
RICHARD c. JOHNSTON

Sign in / Sign up

Export Citation Format

Share Document