Effect of β-Al5FeSi and π-Al8Mg3FeSi6 Phases on the Impact Toughness and Fractography of Al–Si–Mg-Based Alloys

2017 ◽  
Vol 12 (1) ◽  
pp. 148-163 ◽  
Author(s):  
E. A. Elsharkawi ◽  
M. H. Abdelaziz ◽  
H. W. Doty ◽  
S. Valtierra ◽  
F. H. Samuel
Keyword(s):  
Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1566
Author(s):  
Anastasiya Dolzhenko ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov

The microstructural mechanisms providing delamination toughness in high-strength low-alloyed steels are briefly reviewed. Thermo-mechanical processing methods improving both the strength and impact toughness are described, with a close relation to the microstructures and textures developed. The effect of processing conditions on the microstructure evolution in steels with different carbon content is discussed. Particular attention is paid to tempforming treatment, which has been recently introduced as a promising processing method for high-strength low-alloyed steel semi-products with beneficial combination of strength and impact toughness. Tempforming consists of large strain warm rolling following tempering. In contrast to ausforming, the steels subjected to tempforming may exhibit an unusual increase in the impact toughness with a decrease in test temperature below room temperature. This phenomenon is attributed to the notch blunting owing to easy splitting (delamination) crosswise to the principle crack propagation. The relationships between the crack propagation mode, the delamination fracture, and the load-displacement curve are presented and discussed. Further perspectives of tempforming applications and promising research directions are outlined.


2012 ◽  
Vol 445 ◽  
pp. 195-200
Author(s):  
Murat Aydin ◽  
Yakup Heyal

The mechanical properties mainly tensile properties, impact toughness and high-cycle fatigue properties, of two-phase Al-20Zn alloy subjected to severe plastic deformation (SPD) via equal-channel angular extrusion (ECAE) using route A up to 2 passes were studied. The ECAE almost completely eliminated as-cast dendritic microstructure including casting defects such as micro porosities. A refined microstructure consisting of elongated micro constituents, α and α+η eutectic phases, formed after ECAE via route A. As a result of this microstructural change, mechanical properties mainly the impact toughness and fatigue performance of the as-cast Al-20Zn alloy increased significantly through the ECAE. The rates of increase in fatigue endurance limit are approximately 74 % after one pass and 89 % after two passes while the increase in impact toughness is 122 %. Also the yield and tensile strengths of the alloy increase with ECAE. However, no considerable change occurred in hardness and percentage elongation of the alloy. It was also observed that the ECAE changed the nature of the fatigue fracture characteristics of the as-cast Al-20Zn alloy.


2013 ◽  
Vol 762 ◽  
pp. 551-555 ◽  
Author(s):  
Marek Stanislaw Węglowski ◽  
Marian Zeman ◽  
Miroslaw Lomozik

In the present study, the investigation of weldability of new ultra-high strength - Weldox 1300 steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on the microstructure and mechanical properties of the heat affected zone (HAZ). In the frame of these investigation the microstructure was studied by the light (LM) and transmission electron microscopies (TEM). It has been shown that the microstructure of the Weldox 1300 steel is composed of tempered martensite, and inside the laths the minor precipitations mainly V(CN) and molybdenum carbide Mo2C were observed. Mechanical properties of parent material were analysed by the tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 - 300 s. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The results show that the impact toughness and hardness decrease with the increase of t8/5 under the condition of a single thermal cycle in simulated HAZ. The continuous cooling transformation diagrams (CCT-W for welding conditions) of Weldox 1300 steel for welding purposes was also elaborated. The steel Weldox 1300 for cooling time in the range of 2,5 - 4 s showed martensite microstructure, for time from 4 s to 60 s mixture of martensite and bainite, and for longer cooling time mixture of ferrite, bainite and martensite. The results indicated that the weldability of Weldox 1300 steel is limited and to avoid the cold cracking the preheating procedure or medium net linear heat input should be used.


2018 ◽  
Vol 115 (4) ◽  
pp. 410
Author(s):  
Fengyu Song ◽  
Yanmei Li ◽  
Ping Wang ◽  
Fuxian Zhu

Three weld metals with different oxygen contents were developed. The influence of oxygen contents on the microstructure and impact toughness of weld metal was investigated through high heat input welding tests. The results showed that a large number of fine inclusions were formed and distributed randomly in the weld metal with oxygen content of 500 ppm under the heat input condition of 341 kJ/cm. Substantial cross interlocked acicular ferritic grains were induced to generate in the vicinity of the inclusions, primarily leading to the high impact toughness at low temperature for the weld metal. With the increase of oxygen content, the number of fine inclusions distributed in the weld metal increased and the grain size of intragranular acicular ferrites decreased, which enhanced the impact toughness of the weld metal. Nevertheless, a further increase of oxygen content would contribute to a great diminution of the austenitic grain size. Following that the fraction of grain boundary and the start temperature of transformation increased, which facilitated the abundant formation of pro-eutectoid ferrites and resulted in a deteriorative impact toughness of the weld metal.


2017 ◽  
Vol 17 ◽  
pp. 123-134 ◽  
Author(s):  
W.A. Grell ◽  
E. Solis-Ramos ◽  
E. Clark ◽  
E. Lucon ◽  
E.J. Garboczi ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 868 ◽  
Author(s):  
Yu Huang ◽  
Guo-Guang Cheng ◽  
Shi-Jian Li ◽  
Wei-Xing Dai ◽  
You Xie

Simultaneously improving the toughness and strength of B-microalloyed steel by adding microalloying elements (Nb, V, Ti) has been an extensively usedmethod for researchers. However, coarse Ti(C, N) particle will precipitate during solidification with inappropriate Ti content addition, resulting in poor impact toughness. The effect of the size, number density, and location of Ti(C, N) particle on the impact toughness of B-microalloyed steel with various Ti/N ratios was investigated. Coarse Ti(C, N) particles were investigated to act as the cleavage fracture initiation sites, by using scanning electron microscopy (SEM) analysis. When more coarse Ti(C, N) inclusions were located in ferrite instead of pearlite, the impact toughness of steel with ferrite–pearlite microstructure was lower. Meanwhile, when the size or the number density of Ti(C, N) inclusions was larger, the impact toughness was adversely affected. Normalizing treatment helps to improve the impact property of B-microalloyed steel, owing to the location of Ti(C, N) particles being partly changed from ferrite to pearlite. The formation mechanism of coarse Ti(C, N) particles was calculated by the thermodynamic software Factsage 7.1 and Thermo-Calc. The Ti(C, N) particles formed during the solidification of molten steel, and the N-rich Ti(C, N) phase precipitated first and, then, followed by the C-rich Ti(C, N) phase. Decreasing the Ti and N content is an effective way to inhibit the formation of coarse Ti(C, N) inclusions.


2019 ◽  
Vol 38 (2019) ◽  
pp. 362-369 ◽  
Author(s):  
Ming-ming Song ◽  
Yu-min Xie ◽  
Bo Song ◽  
Zheng-liang Xue ◽  
Nan Nie ◽  
...  

AbstractThe microstructures and impact properties of the heat affected zone (HAZ) in steel treated by rare earth (RE) under different welding processes were discussed. The effect of Al on the impact properties of the HAZ in RE treated steel was analyzed. It finds that when the welding t8/5 is smaller than 111 s, the main microstructure in steels is bainite/widmanstatten. The impact toughness of the HAZ is lower than that of the steel matrix. When t8/5 is more than 250 s, the microstructure is mainly acicular ferrite (AF) in the steel treated by RE, and the impact toughness of HAZ is obviously improved. Even under the welding processing with t8/5 about 600 s in RE treated steel can still obtain a lot of AF. While in the steel killed by Al and treated by RE, the main microstructure is parallel cluster of bainite/widmanstatten, and the impact toughness of HAZ is significantly lower than that of low-Al RE treated steel. Al can deteriorate the optimizing of RE treatment on HAZ.


2011 ◽  
Vol 230-232 ◽  
pp. 1350-1354 ◽  
Author(s):  
Min You ◽  
Jing Rong Hu ◽  
Xiao Ling Zheng ◽  
Ai Ping He ◽  
Cun Jun Chen

The effect of the adhesive thickness on the impact toughness of the adhesively bonded steel joint under impact loading is studied using the experimental method. The results obtained show that the impact toughness increases when the adhesive thickness increased then it decrease as the adhesive thickness increase. When the curing time is set as a constant, the higher the curing temperature is, the lower the impact toughness of the joint. The optimum thickness of the adhesive layer for the specimen of impact toughness test cured at 60 C for 1 h is 0.6 mm and it is 0.4 mm to 0.6 mm for the specimen cured 1 h at temperature of 90 C or higher than it. It is recommended using the notched specimen to decrease the testing deviation.


Sign in / Sign up

Export Citation Format

Share Document