scholarly journals The Microstructure and Property of the Heat Affected zone in C-Mn Steel Treated by Rare Earth

2019 ◽  
Vol 38 (2019) ◽  
pp. 362-369 ◽  
Author(s):  
Ming-ming Song ◽  
Yu-min Xie ◽  
Bo Song ◽  
Zheng-liang Xue ◽  
Nan Nie ◽  
...  

AbstractThe microstructures and impact properties of the heat affected zone (HAZ) in steel treated by rare earth (RE) under different welding processes were discussed. The effect of Al on the impact properties of the HAZ in RE treated steel was analyzed. It finds that when the welding t8/5 is smaller than 111 s, the main microstructure in steels is bainite/widmanstatten. The impact toughness of the HAZ is lower than that of the steel matrix. When t8/5 is more than 250 s, the microstructure is mainly acicular ferrite (AF) in the steel treated by RE, and the impact toughness of HAZ is obviously improved. Even under the welding processing with t8/5 about 600 s in RE treated steel can still obtain a lot of AF. While in the steel killed by Al and treated by RE, the main microstructure is parallel cluster of bainite/widmanstatten, and the impact toughness of HAZ is significantly lower than that of low-Al RE treated steel. Al can deteriorate the optimizing of RE treatment on HAZ.

2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2017 ◽  
Vol 89 (3) ◽  
pp. 1700355 ◽  
Author(s):  
Ming-Ming Song ◽  
Chun-Lin Hu ◽  
Bo Song ◽  
Hang-Yu Zhu ◽  
Zheng-Liang Xue ◽  
...  

2012 ◽  
Vol 538-541 ◽  
pp. 2003-2008 ◽  
Author(s):  
Zheng Hai Xia ◽  
Xiang Liang Wan ◽  
Xue Li Tao ◽  
Kai Ming Wu

The effect of heat input on toughness of coarse-grained heat-affected zone of an ultra low carbon acicular ferrite steel were investigated when the welding was conducted with high heat input. Microstructural observations, energy dispersive X-ray spectroscopy analyses were conducted using optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The microstructures of coarse-grained heat-affected zone consist of predominantly bainitic microstructure and a small proportion of acicular ferrite grains. The bainitic microstructures become coarsened with increasing heat input. The impact toughness of coarse-grained heat-affected zone remained at a higher level when the heat input ranged from 42 to 55 kJ/cm. It became not stable and dropped to a lower level when the heat input increased to 110150 kJ/cm. The enhancement in impact toughness was attributable to the MnS precipitation on the pre-formed Ti oxides as well as the formation of intragranular ferrite. When specimens were welded with higher heat input, the deterioration of impact toughness was caused by the coarsening of austenite grains.


2020 ◽  
Vol 7 ◽  
pp. 4 ◽  
Author(s):  
Beata Skowrońska ◽  
Tomasz Chmielewski ◽  
Dariusz Golański ◽  
Jacek Szulc

The paper describes the microstructure of welded joints produced by the plasma+MAG (Metal Active Gas) method of S700MC high yield strength steel (700 MPa). Welded joints of thermomechanical steel have been made with different values of heat input. The results of metallographic research of welded joints, microstructure of the weld and heat affected zone, hardness distribution and impact toughness are presented. The heat affected zone consists of two sub-zones with different grain size and lowered hardness. The tensile test show that strength of welded joints was slightly reduced and the bending test revealed no crack formation in the weld. The impact toughness of measured welded samples with V-notch in HAZ (heat affected zone) reached high values that are higher comparing to samples with notch placed in the weld area. The investigation results show that the use of plasma concentrated heat source together with MAG welding arc does not significantly change the structure and deteriorate properties of welded S700MC thermomechanically treated high strength steel. The hybrid plasma+MAG welding method has a potential to become a beneficial alternative to other welding processes due to its high efficiency, reduced amount of weld metal content or limited requirements for a preparation of edges of welded joints.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2008 ◽  
Vol 59 (2) ◽  
pp. 134-139 ◽  
Author(s):  
A.M. Guo ◽  
S.R. Li ◽  
J. Guo ◽  
P.H. Li ◽  
Q.F. Ding ◽  
...  

2017 ◽  
Vol 122 ◽  
pp. 199-206 ◽  
Author(s):  
Jeongho Han ◽  
Alisson Kwiatkowski da Silva ◽  
Dirk Ponge ◽  
Dierk Raabe ◽  
Sang-Min Lee ◽  
...  

2013 ◽  
Vol 834-836 ◽  
pp. 816-819 ◽  
Author(s):  
Li Jun Tan ◽  
Jun Qiao Wang ◽  
Qing Qun Wang ◽  
Xin Long Chen ◽  
Si Zhu Zhou

The tensile and impact properties of SAE4320 and SAE8620 alloys were investigated. Various heat treatments were applied to these two alloys, including different pre-heat treatment. The results shown that after Carburizing and Quenching, both SAE4320 and SAE8620 alloys were highly sensitively to V-notches for their impact samples. In any case, SAE4320 alloy revealed higher tensile strength, better impact toughness and deformation property. Previous work shown that after Carburizing and Quenching, the impact toughness of SAE8620 alloy was too low, the products made of it was very dangerous. Based on the results, a new advanced product was made of SAE4320 alloy instead of SAE8620 alloy. And the new product exhibited good properties. The impact value of the new product far exceeded the older products.


2006 ◽  
Vol 71 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Radica Prokic-Cvetkovic ◽  
Andjelka Milosavljevic ◽  
Aleksandar Sedmak ◽  
Olivera Popovic

Testing were carried out on two steels. The first was microalloyed with Nb and second with Ti, Nb and V. The impact toughness of weld metals of these steels was evaluated using an instrumented Charpy pendulum. Five different gas mixtures (Ar, CO2, O2) were used to determine the optimal gas shielded metal arc process for both steels. The oxygen equivalent was used as a representative parameter of a mixture to follow, in particularly, its effect on the microstructure, toughness and crack propagation energy of the weld metal. For these investigated steels, the optimum gas mixture was established (5%CO2, 0.91%O2, balance Ar), which provided the maximum crack propagation energy, due to the microstructure which consisted dominantly of acicular ferrite.


Sign in / Sign up

Export Citation Format

Share Document