scholarly journals Molecular architecture of mouse and human pancreatic zymogen granules: protein components and their copy numbers

2018 ◽  
Vol 4 (2) ◽  
pp. 94-103 ◽  
Author(s):  
Jin-sook Lee ◽  
Joseph A. Caruso ◽  
Garrett Hubbs ◽  
Patricia Schnepp ◽  
James Woods ◽  
...  
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alan MV West ◽  
Scott C Rosenberg ◽  
Sarah N Ur ◽  
Madison K Lehmer ◽  
Qiaozhen Ye ◽  
...  

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that ‘axis core proteins’ from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify ‘closure motifs’ in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.


2015 ◽  
Vol 43 (5) ◽  
pp. 838-843 ◽  
Author(s):  
Erin E. Cutts ◽  
Alison Inglis ◽  
Phillip J. Stansfeld ◽  
Ioannis Vakonakis ◽  
Georgios N. Hatzopoulos

Centrioles are evolutionarily conserved cylindrical cell organelles with characteristic radial symmetry. Despite their considerable size (400 nm × 200 nm, in humans), genetic studies suggest that relatively few protein components are involved in their assembly. We recently characterized the molecular architecture of the centrosomal P4.1-associated protein (CPAP), which is crucial for controlling the centriolar cylinder length. Here, we review the remarkable architecture of the C-terminal domain of CPAP, termed the G-box, which comprises a single, entirely solvent exposed, antiparallel β-sheet. Molecular dynamics simulations support the stability of the G-box domain even in the face of truncations or amino acid substitutions. The similarity of the G-box domain to amyloids (or amyloid precursors) is strengthened by its oligomeric arrangement to form continuous fibrils. G-box fibrils were observed in crystals as well as in solution and are also supported by simulations. We conclude that the G-box domain may well represent the best analogue currently available for studies of exposed β-sheets, unencumbered by additional structural elements or severe aggregations problems.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Qi Sun ◽  
Xing Zhu ◽  
Jia Qi ◽  
Weidong An ◽  
Pengfei Lan ◽  
...  

Eukaryotic small ribosomal subunits are first assembled into 90S pre-ribosomes. The complete 90S is a gigantic complex with a molecular mass of approximately five megadaltons. Here, we report the nearly complete architecture of Saccharomyces cerevisiae 90S determined from three cryo-electron microscopy single particle reconstructions at 4.5 to 8.7 angstrom resolution. The majority of the density maps were modeled and assigned to specific RNA and protein components. The nascent ribosome is assembled into isolated native-like substructures that are stabilized by abundant assembly factors. The 5' external transcribed spacer and U3 snoRNA nucleate a large subcomplex that scaffolds the nascent ribosome. U3 binds four sites of pre-rRNA, including a novel site on helix 27 but not the 3' side of the central pseudoknot, and crucially organizes the 90S structure. The 90S model provides significant insight into the principle of small subunit assembly and the function of assembly factors.


2018 ◽  
Author(s):  
Alan M.V. West ◽  
Scott C. Rosenberg ◽  
Sarah N. Ur ◽  
Madison K. Lehmer ◽  
Qiaozhen Ye ◽  
...  

AbstractThe meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that “axis core proteins” from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify motifs in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core complexes form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture and role in axis assembly and recombination control. We propose that the meiotic chromosome axis self-assembles through cooperative interactions between dynamic DNA loop-extruding cohesin complexes and the filamentous axis core, then serves as a platform for chromosome organization, recombination, and synaptonemal complex assembly.


Author(s):  
Kenjiro Yasuda

Localization of amylase,chymotrypsinogen and trypsinogen in pancreas was demonstrated by Yasuda and Coons (1966), by using fluorescent antibody method. These enzymes were naturally found in the zymogen granules. Among them, amylase showed a diffuse localization around the nucleus, in addition to the zymogen granules. Using ferritin antibody method, scattered ferritin granules were also found around the Golgi area (Yasuda et al.,1967). The recent advance in the tissue preparation enables the antigen to be localized in the ultrathin frozen sections, by applying the labeled antibodies onto the sections instead of staining the tissue en bloc.The present study deals with the comparison of the localization of amylase and lipase demonstrated by applying the bismuth-labeled, peroxidase-labeled and ferritin-labeled antibody methods on the ultrathin frozen sections of pancreas, and on the blocks of the same tissue.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


Author(s):  
A.R. Beaudoin ◽  
G. Grondin ◽  
A. Lord ◽  
M. Pelletier

We have recently described the ultrastructural localization of NADPase activity in the exocrine pancreas of rat. The enzyme was found in the intermediate saccules of the Golgi apparatus, in dense bodies and lysosomes but was absent from zymogen granules. A very intense reaction was noticed in a peculiar structure which was termed “Snake-Like Tubule” (SLT). The purposes of the present study were firstly to delineate SLT distribution in the acinar cell and secondly to define any possible relationship or association with other cellular organelles.NADPase cytochemical reaction was performed on the pancreas of adult Sprague Dawley rats. Small lobules were excised and fixed for 50 min, at 4°C, in 2% glutaraldehyde buffered with 0.1M cacodylate at pH 7.2. Lobules were rinsed several times with the same buffer containing 570 sucrose and cut with a Mcllwayn tissue chopper. Sections were washed several times with buffer and incubated for 2 hr at 37°C in the following medium: 4mM NADPH; 40mM sodium acetate buffer, pH 5.0; 4mM lead acetate and 5% sucrose.


Author(s):  
Daniel Beniac ◽  
George Harauz

The structures of E. coli ribosomes have been extensively probed by electron microscopy of negatively stained and frozen hydrated preparations. Coupled with quantitative image analysis and three dimensional reconstruction, such approaches are worthwhile in defining size, shape, and quaternary organisation. The important question of how the nucleic acid and protein components are arranged with respect to each other remains difficult to answer, however. A microscopical technique that has been proposed to answer this query is electron spectroscopic imaging (ESI), in which scattered electrons with energy losses characteristic of inner shell ionisations are used to form specific elemental maps. Here, we report the use of image sorting and averaging techniques to determine the extent to which a phosphorus map of isolated ribosomal subunits can define the ribosomal RNA (rRNA) distribution within them.


Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


Sign in / Sign up

Export Citation Format

Share Document