The role of granite dust in engineered cement composites as a partial replacement of fine aggregate

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tamer I. Ahmed ◽  
D. E. Tobbala
Author(s):  
Anand G ◽  
Tharunkumar N

Concrete ingredients is different material like binding material (cement+ fly ash), fine aggregate, coarse aggregate and water. Today construction cost is very high with using conventional materials due to unavailability of natural materials. This problem can be solved by total replacement of concrete with different material which is not convenient in terms of required properties. Due to this limitation of unavailability of material which plays the vital role of concrete we have only choice of partial replacement of concrete ingredients by waste materials. Overv4.2 billion tons of cement was consumed globally in 2018 based on survey of world coal association and also cement production emits CO2 in to the atmosphere which is harmful to the nature. If we can partially replace the cement with the material with desirable properties then we can save natural material and reduce emission of CO2 in to the atmosphere. This industrial waste dumping to the nearest site which spoils the land and atmosphere as well as it also affects aesthetics of urban environment so use of this waste material in concrete is cost effective as well as environment friendly way to disposal of waste. The primary objective of this study is to select the waste material which gives desirable properties with concrete. This study includes previous investigation done on the mechanical and chemical properties of concrete produced using partial replacement of cement by waste materials.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 463
Author(s):  
Ivan Janotka ◽  
Pavel Martauz ◽  
Michal Bačuvčík

In addition to the known uses of natural clays, less publication attention has been paid to clays returned to the production process. Industrially recovered natural clays such as bricks, tiles, sanitary ceramics, ceramic roofing tiles, etc., are applicable in building materials based on concrete as an artificial recycled aggregate or as a pozzolanic type II addition. In this way, the building products with higher added value are obtained from the originally landfilled waste. This paper details the research process of introducing concrete with recycled brick waste (RBW) up to the application output. The emphasis is placed on using a RBW brash as a partial replacement for natural aggregates and evaluating an RBW powder as a type II addition for use in concrete. A set of the results for an RBW is reported by the following: (a) an artificial RBW fine aggregate meets the required standardized parameters for use in industrially made concrete, (b) a RBW powder is suitable for use in concrete as industrially made type II addition TERRAMENT showing the same pozzolanic reactivity as a well-known and broadly used pozzolan-fly ash, and (c) such an RBW as aggregate and as powder are, therefore, suitable for the production of industrially made TRITECH Eco-designed ready-mixed concrete.


2016 ◽  
Vol 71 ◽  
pp. 166-174 ◽  
Author(s):  
Roey Nadiv ◽  
Michael Shtein ◽  
Maor Refaeli ◽  
Alva Peled ◽  
Oren Regev

Sign in / Sign up

Export Citation Format

Share Document