scholarly journals Progressive edge-sensing dynamic scene deblurring

Author(s):  
Tianlin Zhang ◽  
Jinjiang Li ◽  
Hui Fan

AbstractDeblurring images of dynamic scenes is a challenging task because blurring occurs due to a combination of many factors. In recent years, the use of multi-scale pyramid methods to recover high-resolution sharp images has been extensively studied. We have made improvements to the lack of detail recovery in the cascade structure through a network using progressive integration of data streams. Our new multi-scale structure and edge feature perception design deals with changes in blurring at different spatial scales and enhances the sensitivity of the network to blurred edges. The coarse-to-fine architecture restores the image structure, first performing global adjustments, and then performing local refinement. In this way, not only is global correlation considered, but also residual information is used to significantly improve image restoration and enhance texture details. Experimental results show quantitative and qualitative improvements over existing methods.

Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

AbstractHow do invasive species change native biodiversity? One reason why this long-standing question remains challenging to answer could be because the main focus of the invasion literature has been on shifts in species richness (a measure of α-diversity). As the underlying components of community structure—intraspecific aggregation, interspecific density and the species abundance distribution (SAD)—are potentially impacted in different ways during invasion, trends in species richness provide only limited insight into the mechanisms leading to biodiversity change. In addition, these impacts can be manifested in distinct ways at different spatial scales. Here we take advantage of the new Measurement of Biodiversity (MoB) framework to reanalyse data collected in an invasion front in the Brazilian Cerrado biodiversity hotspot. We show that, by using the MoB multi-scale approach, we are able to link reductions in species richness in invaded sites to restructuring in the SAD. This restructuring takes the form of lower evenness in sites invaded by pines relative to sites without pines. Shifts in aggregation also occur. There is a clear signature of spatial scale in biodiversity change linked to the presence of an invasive species. These results demonstrate how the MoB approach can play an important role in helping invasion ecologists, field biologists and conservation managers move towards a more mechanistic approach to detecting and interpreting changes in ecological systems following invasion.


Author(s):  
Jia-Rong Yeh ◽  
Chung-Kang Peng ◽  
Norden E. Huang

Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal’s complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.


1998 ◽  
Vol 88 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Mitchell Withers ◽  
Richard Aster ◽  
Christopher Young ◽  
Judy Beiriger ◽  
Mark Harris ◽  
...  

Abstract Digital algorithms for robust detection of phase arrivals in the presence of stationary and nonstationary noise have a long history in seismology and have been exploited primarily to reduce the amount of data recorded by data logging systems to manageable levels. In the present era of inexpensive digital storage, however, such algorithms are increasingly being used to flag signal segments in continuously recorded digital data streams for subsequent processing by automatic and/or expert interpretation systems. In the course of our development of an automated, near-real-time, waveform correlation event-detection and location system (WCEDS), we have surveyed the abilities of such algorithms to enhance seismic phase arrivals in teleseismic data streams. Specifically, we have considered envelopes generated by energy transient (STA/LTA), Z-statistic, frequency transient, and polarization algorithms. The WCEDS system requires a set of input data streams that have a smooth, low-amplitude response to background noise and seismic coda and that contain peaks at times corresponding to phase arrivals. The algorithm used to generate these input streams from raw seismograms must perform well under a wide range of source, path, receiver, and noise scenarios. Present computational capabilities allow the application of considerably more robust algorithms than have been historically used in real time. However, highly complex calculations can still be computationally prohibitive for current workstations when the number of data streams become large. While no algorithm was clearly optimal under all source, receiver, path, and noise conditions tested, an STA/LTA algorithm incorporating adaptive window lengths controlled by nonstationary seismogram spectral characteristics was found to provide an output that best met the requirements of a global correlation-based event-detection and location system.


Rangifer ◽  
2008 ◽  
Vol 28 (1) ◽  
pp. 33
Author(s):  
Robert Serrouya ◽  
Bruce N. McLellan ◽  
Clayton D. Apps ◽  
Heiko U. Wittmer

Mountain caribou are an endangered ecotype of woodland caribou (Rangifer tarandus caribou) that live in highprecipitation, mountainous ecosystems of southeastern British Columbia and northern Idaho. The distribution and abundance of these caribou have declined dramatically from historical figures. Results from many studies have indicated that mountain caribou rely on old conifer forests for several life-history requirements including an abundance of their primary winter food, arboreal lichen, and a scarcity of other ungulates and their predators. These old forests often have high timber value, and understanding mountain caribou ecology at a variety of spatial scales is thus required to develop effective conservation strategies. Here we summarize results of studies conducted at three different spatial scales ranging from broad limiting factors at the population level to studies describing the selection of feeding sites within seasonal home ranges of individuals. The goal of this multi-scale review is to provide a more complete picture of caribou ecology and to determine possible shifts in limiting factors across scales. Our review produced two important results. First, mountain caribou select old forests and old trees at all spatial scales, signifying their importance for foraging opportunities as well as conditions required to avoid alternate ungulates and their predators. Second, relationships differ across scales. For example, landscapes dominated by roads and edges negatively affect caribou survival, but appear to attract caribou during certain times of the year. This juxtaposition of fine-scale behaviour with broad-scale vulnerability to predation could only be identified through integrated multi-scale analyses of resource selection. Consequently we suggest that effective management strategies for endangered species require an integrative approach across multiple spatial scales to avoid a focus that may be too narrow to maintain viable populations. Abstract in Norwegian / Sammendrag:Skala-avhengig økologi og truet fjellvillrein i Britisk ColumbiaFjellvillreinen i de nedbørsrike fjellområdene i sørøstre Britisk Columbia og nordlige Idaho som er en truet økotype av skogsreinen (Rangifer tarandus caribou), har blitt kraftig redusert både i utbredelse og antall. Mange studier har vist at denne økotypen er avhengig av vinterføden hengelav i gammel barskog hvor det også er få andre klovdyr og dermed få predatorer. Slik skog er også viktige hogstområder, og å forstå økologien til fjellvillreinen i forskjellige skaleringer er derfor nødvendig for å utvikle forvaltningsstrategier som kan berge og ta vare på denne reinen. Artikkelen gir en oversikt over slike arbeider: fra studier av begrensende faktorer på populasjonsnivå til studier av sesongmessige beiteplasser på individnivå. Hensikten er å få frem et mer helhetlig perspektiv på fjellvillreinen og finne hvordan de begrensende faktorene varierer etter skaleringen som er benyttet i studiet. Oversikten vår frembragte to viktige resultater; 1) Uansett skalering så velger dyrene gammel skog og gamle trær. 2) Dyrenes bruk av et område kan variere med benyttet skalering, for eksempel vil landskap utbygd med veier og hogstflater være ufordelaktig for overlevelsen, men synes likevel å kunne tiltrekke fjellvillreinen til visse tider av året. Forholdet mellom atferd ut fra fin-skalering og stor-skalering sårbarhet hva gjelder predasjon, ville kun blitt avdekket ved flere-skaleringsanalyse av hvordan ressursene benyttes. Ut fra dette foreslår vi at forvaltningsstrategier for truete bestander som eksempelvis fjellvillreinen, må baseres på tilnærminger ut fra ulike skaleringer for å hindre at et for snevert perspektiv kan begrense muligheten for vedvarende levedyktighet.


2019 ◽  
Author(s):  
Casper Kraan ◽  
Barry L. Greenfield ◽  
Simon F. Thrush

Abstract. Understanding how the plants and animals that live in the seafloor vary in their spatial patterns of diversity and abundance is fundamental to gaining insight in the role of biodiversity in maintaining ecosystem functioning in coastal ecosystems, as well as advancing the modelling of species distributions under realistic assumptions. Yet, it is virtually unknown how the relationships between abundance patterns and different biotic and environmental processes change depending on spatial scales, which is mainly due to a lack of data. Within the project Spatial Organization of Species Distributions: Hierarchical and Scale-Dependent Patterns and Processes in Coastal Seascapes at the National Institute for Water and Atmospheric Research (NIWA) in New Zealand we collected multi-scale and high-resolution data on macrobenthic biodiversity. We found 146 species, i.e. bivalves, polychaetes and crustaceans (> 500 μm) that live hidden in marine sandflats, and collected point measurements of important environmental variables (sediment grain-size distributions, chlorophyll a concentration, and visible sandflat parameters) in three large intertidal Harbours (Kaipara, Tauranga and Manukau). In each Harbour we sampled 400 points for macrobenthic community composition and abundances, as well as the full set of environmental variables. Using an elaborate sampling design, we were able to cover scales from 30 centimetres to a maximal extent of 1 km. All data and extensive metadata are available from the data publisher PANGAEA via the persistent identifier https://doi.org/10.1594/PANGAEA.903448.


2014 ◽  
Vol 26 (10) ◽  
pp. 2287-2297 ◽  
Author(s):  
Benoit Musel ◽  
Louise Kauffmann ◽  
Stephen Ramanoël ◽  
Coralie Giavarini ◽  
Nathalie Guyader ◽  
...  

Neurophysiological, behavioral, and computational data indicate that visual analysis may start with the parallel extraction of different elementary attributes at different spatial frequencies and follows a predominantly coarse-to-fine (CtF) processing sequence (low spatial frequencies [LSF] are extracted first, followed by high spatial frequencies [HSF]). Evidence for CtF processing within scene-selective cortical regions is, however, still lacking. In the present fMRI study, we tested whether such processing occurs in three scene-selective cortical regions: the parahippocampal place area (PPA), the retrosplenial cortex, and the occipital place area. Fourteen participants were subjected to functional scans during which they performed a categorization task of indoor versus outdoor scenes using dynamic scene stimuli. Dynamic scenes were composed of six filtered images of the same scene, from LSF to HSF or from HSF to LSF, allowing us to mimic a CtF or the reverse fine-to-coarse (FtC) sequence. Results showed that only the PPA was more activated for CtF than FtC sequences. Equivalent activations were observed for both sequences in the retrosplenial cortex and occipital place area. This study suggests for the first time that CtF sequence processing constitutes the predominant strategy for scene categorization in the PPA.


2020 ◽  
Vol 9 (9) ◽  
pp. 497
Author(s):  
Haydn Lawrence ◽  
Colin Robertson ◽  
Rob Feick ◽  
Trisalyn Nelson

Social media and other forms of volunteered geographic information (VGI) are used frequently as a source of fine-grained big data for research. While employing geographically referenced social media data for a wide array of purposes has become commonplace, the relevant scales over which these data apply to is typically unknown. For researchers to use VGI appropriately (e.g., aggregated to areal units (e.g., neighbourhoods) to elicit key trend or demographic information), general methods for assessing the quality are required, particularly, the explicit linkage of data quality and relevant spatial scales, as there are no accepted standards or sampling controls. We present a data quality metric, the Spatial-comprehensiveness Index (S-COM), which can delineate feasible study areas or spatial extents based on the quality of uneven and dynamic geographically referenced VGI. This scale-sensitive approach to analyzing VGI is demonstrated over different grains with data from two citizen science initiatives. The S-COM index can be used both to assess feasible study extents based on coverage, user-heterogeneity, and density and to find feasible sub-study areas from a larger, indefinite area. The results identified sub-study areas of VGI for focused analysis, allowing for a larger adoption of a similar methodology in multi-scale analyses of VGI.


2019 ◽  
Vol 8 (2) ◽  
pp. 72 ◽  
Author(s):  
Yi Qiang ◽  
Nico Van de Weghe

The representations of space and time are fundamental issues in GIScience. In prevalent GIS and analytical systems, time is modeled as a linear stream of real numbers and space is represented as flat layers with timestamps. Despite their dominance in GIS and information visualization, these representations are inefficient for visualizing data with complex temporal and spatial extents and the variation of data at multiple temporal and spatial scales. This article presents alternative representations that incorporate the scale dimension into time and space. The article first reviews a series of work about the triangular model (TM), which is a multi-scale temporal model. Then, it introduces the pyramid model (PM), which is the extension of the TM for spatial data, and demonstrates the utility of the PM in visualizing multi-scale spatial patterns of land cover data. Finally, it discusses the potential of integrating the TM and the PM into a unified framework for multi-scale spatio-temporal modeling. This article systematically documents the models with alternative arrangements of space and time and their applications in analyzing different types of data. Additionally, this article aims to inspire the re-thinking of organizations of space, time, and scales in the future development of GIS and analytical tools to handle the increasing quantity and complexity of spatio-temporal data.


2004 ◽  
Vol 91 (4) ◽  
pp. 1782-1793 ◽  
Author(s):  
Michael D. Menz ◽  
Ralph D. Freeman

To solve the stereo correspondence problem (i.e., find the matching features of a visual scene in both eyes), it is advantageous to combine information across spatial scales. The details of how this is accomplished are not clear. Psychophysical studies and mathematical models have suggested various types of interactions across spatial scale, including coarse to fine, fine to coarse, averaging, and population coding. In this study, we investigate dynamic changes in disparity tuning of simple and complex cells in the cat's striate cortex over a short time span. We find that disparity frequency increases and disparity ranges decrease while optimal disparity remains constant, and this conforms to a coarse-to-fine mechanism. We explore the origin of this mechanism by examining the frequency and size dynamics exhibited by binocular simple cells and neurons in the lateral geniculate nucleus (LGN). The results suggest a strong role for a feed-forward mechanism, which could originate in the retina. However, we find that the dynamic changes seen in the disparity range of simple cells cannot be predicted from their left and right eye monocular receptive field (RF) size changes. This discrepancy suggests the possibility of a dynamic nonlinearity or disparity specific feedback that alters tuning or a combination of both mechanisms.


Sign in / Sign up

Export Citation Format

Share Document