Pathogenic variability among Colletotrichum kahawae Waller & Bridge population from major coffee growing regions of Ethiopia

Author(s):  
Kumlachew Alemu ◽  
Girma Adugna ◽  
Fikre Lemessa ◽  
Diriba Muleta
2020 ◽  
Vol 132 ◽  
pp. 105113
Author(s):  
E. Mangwende ◽  
P.W. Chirwa ◽  
T.A.S. Aveling

2003 ◽  
Vol 93 (2) ◽  
pp. 219-228 ◽  
Author(s):  
Béatrice Denoyes-Rothan ◽  
Guy Guérin ◽  
Christophe Délye ◽  
Barbara Smith ◽  
Dror Minz ◽  
...  

Ninety-five isolates of Colletotrichum including 81 isolates of C. acutatum (62 from strawberry) and 14 isolates of C. gloeosporioides (13 from strawberry) were characterized by various molecular methods and pathogenicity tests. Results based on random amplified polymorphic DNA (RAPD) polymorphism and internal transcribed spacer (ITS) 2 sequence data provided clear genetic evidence of two subgroups in C. acutatum. The first subgroup, characterized as CA-clonal, included only isolates from strawberry and exhibited identical RAPD patterns and nearly identical ITS2 sequence analysis. A larger genetic group, CA-variable, included isolates from various hosts and exhibited variable RAPD patterns and divergent ITS2 sequence analysis. Within the C. acutatum population isolated from strawberry, the CA-clonal group is prevalent in Europe (54 isolates of 62). A subset of European C. acutatum isolates isolated from strawberry and representing the CA-clonal and CA-variable groups was assigned to two pathogenicity groups. No correlation could be drawn between genetic and pathogenicity groups. On the basis of molecular data, it is proposed that the CA-clonal subgroup contains closely related, highly virulent C. acutatum isolates that may have developed host specialization to strawberry. C. gloeosporioides isolates from Europe, which were rarely observed were either slightly or nonpathogenic on strawberry. The absence of correlation between genetic polymorphism and geographical origin in Colletotrichum spp. suggests a worldwide dissemination of isolates, probably through international plant exchanges.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Umer Iqbal ◽  
Tariq Mukhtar

Macrophomina phaseolinais a serious pathogen of many crops. In the present studies, 65 isolates ofMacrophomina phaseolinafrom different agroecological regions of Punjab and Khyber Pakhtunkhwa provinces of Pakistan were analyzed for morphological and pathogenic variability. Regardless of their geographic origins, significant differences were detected among 65 isolates in their radial growth, sclerotial size, and weight as well as in pathogenicity. Sixteen isolates were rated as fast growing, 11 as slow growing, and the rest of the isolates as medium growing. Nine isolates were classified as large sized, 26 as small sized, and the remaining 30 isolates as medium sized. Thirty five isolates were ranked as heavy weight, 12 as low weight, and the rest of isolates were grouped as medium weight. Ten fungal isolates appeared to be least virulent, whereas eight isolates of diverse origin proved to be highly virulent against mungbean cultivars. The remaining isolates were regarded as moderately virulent. No relationship was found among the morphological characters and pathogenicity of the isolates. These morphological and pathogenic variations in various isolates ofM. phaseolinamay be considered important in disease management systems and will be useful in breeding programmes of mungbean cultivars resistant to charcoal rot.


1974 ◽  
Vol 25 (1) ◽  
pp. 21 ◽  
Author(s):  
SM Ali ◽  
WJR Boyd

The pathogenic variability of isolates of R. secalis collected in Western Australia has been examined on different host genera of the Gramineae and on selected barley cultivars. Depending on the host-isolate combination and the conditions of the test, evidence has been obtained of inter- and intra-isolate variability in both host reaction and isolate pathogenicity. This complicates definitive interpretation of the results, militates against identification of conventional 'races' of the pathogen and shows that R. secalis does not exhibit strict host specialization. Hosts which consistently express resistance or susceptibility under different environmental conditions, and isolates which express their pathogenic characteristics consistently, have been identified. The need for more precise genetic studies and adequate sampling of genetic diversity is emphasized.


2000 ◽  
Vol 90 (6) ◽  
pp. 621-628 ◽  
Author(s):  
Thinlay ◽  
R. S. Zeigler ◽  
M. R. Finckh

Thirty isolates of P. griseacollected from rice during a blast epidemic in 1995 in the high (1,800 to 2,600 m) and middle (1,200 to 1,800 m) elevations of Bhutan and 80 isolates collected from one rice cultivar from two high- and two mid-elevation sites in 1996 were analyzed for virulence. Differential varieties were indica CO39, with five near-isogenic lines (NILs) for resistance genes in the genetic background of CO39, and japonica Lijiangxintuanheigu (LTH), with five NILs for LTH. Twelve selected Bhutanese landraces also were studied. In addition, 10 blast nurseries consisting of the NIL sets, important local landraces, and representatives of international differential groups were established in the 1996 and 1997 growing seasons in the mid- and high-elevation agroecological zones. The 110 isolates were differentiated into 53 pathotypes based on the 2 NIL sets. Thirteen isolates were avirulent on all of the NILs but were compatible with some landraces. Several isolates were able to attack one of the NILs of CO39 but not CO39. These results strongly suggest that both CO39 and LTH possess previously unidentified resistance. The landraces were not uniform in their reactions to the isolates. When a reaction index taking into account all individual plant reactions was used, isolates that had been assigned to the same pathotype could be further differentiated, indicating that the NIL sets could not completely discriminate virulences in Bhutanese P. grisea populations. In the trap nurseries, disease was always present in the middle elevations, but disease was very low during July 1996 in the high elevations and only present during August and September 1997. Almost all varietal groups were more frequently attacked in the middle than in the high elevations, indicating that the virulence spectrum is wider and the conduciveness of the environment is greater in the middle elevations. Landraces from the high elevations were most susceptible, followed by international differential groups 7 and 8. The results suggest that selection has yielded landraces with more complete and complex resistance in the more disease-conducive mid-elevation environment. At the same time, the pathogen population also possesses a wider virulence spectrum in that environment.


2002 ◽  
Vol 27 (1) ◽  
pp. 78-81 ◽  
Author(s):  
ALOISIO SARTORATO

Due to the increased importance of angular leaf spot of common bean (Phaseolus vulgaris) in Brazil, monitoring the pathogenic variability of its causal agent (Phaeoisariopsis griseola) is the best strategy for a breeding program aimed at developing resistant genotypes. Fifty one isolates of P. griseola collected in five Brazilian States were tested on a set of 12 international differential cultivars in the greenhouse. When inoculated plants showed symptoms but no sporulation was observed, they were transferred to a moist chamber for approximately 20-24 h. After this period of time, if no sporulation was observed, the plants were considered resistant; otherwise, they were considered susceptible. From the fifty-one tested isolates, seven different pathotypes were identified. No Andean pathotypes were identified; consequently, all isolates were classified as Middle American pathotypes. Pathotype 63-31 was the most widespread. Pathotype 63-63 overcame resistance genes present in all differential cultivars and also the resistance gene(s) present in the cultivar AND 277. This fact has important implications for breeding angular leaf spot resistance in beans, and suggests that searching for new resistance genes to angular leaf spot must be pursued.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0178159 ◽  
Author(s):  
Inês Diniz ◽  
Andreia Figueiredo ◽  
Andreia Loureiro ◽  
Dora Batista ◽  
Helena Azinheira ◽  
...  

2020 ◽  
pp. 68-90 ◽  
Author(s):  
Carlos Ernesto Maldonado ◽  
Lucia Ángel-Giraldo

La enfermedad de las cerezas del café (CBD), antracnosis causada por el hongo Colletotrichum kahawae subsp. kahawae, ha sido registrada solo en África y puede ocasionar pérdidas de producción hasta del 80%. Cenicafé desarrolla variedades resistentes a las enfermedades más limitantes para el cultivo, aún en ausencia de los patógenos en Colombia, usando al Híbrido de Timor (HT) como la principal fuente de resistencia a la roya del cafeto y a CBD. El propósito de este estudio fue conocer la presencia del gen Ck-1 de resistencia a CBD en las principales variedades de café cultivadas en Colombia, establecer la correlación entre la presencia de Ck-1 y la respuesta a inoculación de hipocótilos y explorar las bases genómicas de la resistencia. Los marcadores moleculares ligados a Ck-1 se ubicaron en el cromosoma 1 de Coffea canephora, región genómica con quince genes de resistencia a enfermedades. Se encontraron marcadores para Ck-1 en todas las líneas mejoradas derivadas del HT-1343 y ausentes en las variedades Típica, Borbón y Caturra, y en líneas derivadas del HT-832/1. No hubo correlación entre las formas alélicas de resistencia a CBD y la resistencia medida por inoculación de hipocótilos. La alta frecuencia de formas alélicas asociadas con resistencia a CBD en materiales seleccionados por resistencia a roya sugiere cosegregación de genes de resistencia para ambas enfermedades. La estrategia de variedades multilínea desarrolladas por Cenicafé, que actualmente corresponde a cerca del 80% del café sembrado en el país, hace que la población en general esté protegida ante la eventual llegada del patógeno a Colombia.


Sign in / Sign up

Export Citation Format

Share Document