The Dynamic Models, Control Strategies and Applications for Magnetorheological Damping Systems: A Systematic Review

Author(s):  
Hongzhan Lv ◽  
Songsong Zhang ◽  
Qi Sun ◽  
Rui Chen ◽  
W. J. Zhang
Author(s):  
Mingjie Dong ◽  
Yu Zhou ◽  
Jianfeng Li ◽  
Xi Rong ◽  
Wenpei Fan ◽  
...  

Abstract Background The ankle joint complex (AJC) is of fundamental importance for balance, support, and propulsion. However, it is particularly susceptible to musculoskeletal and neurological injuries, especially neurological injuries such as drop foot following stroke. An important factor in ankle dysfunction is damage to the central nervous system (CNS). Correspondingly, the fundamental goal of rehabilitation training is to stimulate the reorganization and compensation of the CNS, and to promote the recovery of the motor system’s motor perception function. Therefore, an increasing number of ankle rehabilitation robots have been developed to provide long-term accurate and uniform rehabilitation training of the AJC, among which the parallel ankle rehabilitation robot (PARR) is the most studied. The aim of this study is to provide a systematic review of the state of the art in PARR technology, with consideration of the mechanism configurations, actuator types with different trajectory tracking control techniques, and rehabilitation training methods, thus facilitating the development of new and improved PARRs as a next step towards obtaining clinical proof of their rehabilitation benefits. Methods A literature search was conducted on PubMed, Scopus, IEEE Xplore, and Web of Science for articles related to the design and improvement of PARRs for ankle rehabilitation from each site’s respective inception from January 1999 to September 2020 using the keywords “ parallel”, “ ankle”, and “ robot”. Appropriate syntax using Boolean operators and wildcard symbols was utilized for each database to include a wider range of articles that may have used alternate spellings or synonyms, and the references listed in relevant publications were further screened according to the inclusion criteria and exclusion criteria. Results and discussion Ultimately, 65 articles representing 16 unique PARRs were selected for review, all of which have developed the prototypes with experiments designed to verify their usability and feasibility. From the comparison among these PARRs, we found that there are three main considerations for the mechanical design and mechanism optimization of PARRs, the choice of two actuator types including pneumatic and electrically driven control, the covering of the AJC’s motion space, and the optimization of the kinematic design, actuation design and structural design. The trajectory tracking accuracy and interactive control performance also need to be guaranteed to improve the effect of rehabilitation training and stimulate a patient’s active participation. In addition, the parameters of the reviewed 16 PARRs are summarized in detail with their differences compared by using figures and tables in the order they appeared, showing their differences in the two main actuator types, four exercise modes, fifteen control strategies, etc., which revealed the future research trends related to the improvement of the PARRs. Conclusion The selected studies showed the rapid development of PARRs in terms of their mechanical designs, control strategies, and rehabilitation training methods over the last two decades. However, the existing PARRs all have their own pros and cons, and few of the developed devices have been subjected to clinical trials. Designing a PARR with three degrees of freedom (DOFs) and whereby the mechanism’s rotation center coincides with the AJC rotation center is of vital importance in the mechanism design and optimization of PARRs. In addition, the design of actuators combining the advantages of the pneumatic-driven and electrically driven ones, as well as some new other actuators, will be a research hotspot for the development of PARRs. For the control strategy, compliance control with variable parameters should be further studied, with sEMG signal included to improve the real-time performance. Multimode rehabilitation training methods with multimodal motion intention recognition, real-time online detection and evaluation system should also be further developed to meet the needs of different ankle disability and rehabilitation stages. In addition, the clinical trials are in urgent need to help the PARRs be implementable as an intervention in clinical practice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Busayo I. Ajuwon ◽  
Isabelle Yujuico ◽  
Katrina Roper ◽  
Alice Richardson ◽  
Meru Sheel ◽  
...  

Abstract Background Hepatitis B virus (HBV) is an infectious disease of global significance, causing a significant health burden in Africa due to complications associated with infection, such as cirrhosis and liver cancer. In Nigeria, which is considered a high prevalence country, estimates of HBV cases are inconsistent, and therefore additional clarity is required to manage HBV-associated public health challenges. Methods A systematic review of the literature (via PubMed, Advanced Google Scholar, African Index Medicus) was conducted to retrieve primary studies published between 1 January 2010 and 31 December 2019, with a random-effects model based on proportions used to estimate the population-based prevalence of HBV in the Nigerian population. Results The final analyses included 47 studies with 21,702 participants that revealed a pooled prevalence of 9.5%. A prevalence estimate above 8% in a population is classified as high. Sub-group analyses revealed the highest HBV prevalence in rural settings (10.7%). The North West region had the highest prevalence (12.1%) among Nigeria’s six geopolitical zones/regions. The estimate of total variation between studies indicated substantial heterogeneity. These variations could be explained by setting and geographical region. The statistical test for Egger’s regression showed no evidence of publication bias (p = 0.879). Conclusions We present an up-to-date review on the prevalence of HBV in Nigeria, which will provide critical data to optimise and assess the impact of current prevention and control strategies, including disease surveillance and diagnoses, vaccination policies and management for those infected.


2018 ◽  
Vol 93 (2) ◽  
pp. 131-138 ◽  
Author(s):  
S. Khademvatan ◽  
H. Majidiani ◽  
M. Foroutan ◽  
K. Hazrati Tappeh ◽  
S. Aryamand ◽  
...  

AbstractCystic echinococcosis (CE) caused by Echinococcus granulosus sensu lato (s.l.) is a significant zoonosis, especially in developing countries of the Middle East, with many studies focusing on CE genotypes in Iran. We performed a systematic review to determine the exact status of E. granulosus genotypes in the country. We explored English (Pubmed, Scopus, ISI Web of Science and Science Direct) and Persian (Magiran, Iran Medex and Scientific Information Database) databases along with Google Scholar. Our review included 73 studies published prior to the end of 2015. In total, 2952 animal (intermediate and definitive) hosts were examined, and the prevalent genotypes comprised G1 (92.75%) and G6 (4.53%) in sheep, cattle, camels, goats and buffaloes; G3 (2.43%) in five herbivore hosts and dogs; G7 (0.2%) in sheep and goats; and G2 (0.06%) in dogs. G1 was mostly dominant in West Azerbaijan, whereas G3 and G6 were identified most frequently in the provinces of Isfahan and Fars, respectively. Regarding human CE infection, 340 cases were reported from Iran, with the identified genotypes G1 (n = 320), G6 (n = 13) and G3 (n = 7). Most CE-infected humans originated from Isfahan province (168 cases), whereas the lowest number of infected persons was noted in Kerman province (two cases). The information obtained from this systematic review is central to better understanding the biological and epidemiological characteristics of E. granulosus s.l. genotypes in Iran, leading to more comprehensive control strategies.


Author(s):  
Zhenhe Li ◽  
Yanjun Huang ◽  
Hong Wang

In this article, a novel system configuration with multiple energy sources is proposed for a hybrid truck in order to reduce fuel consumption and overcome the drawbacks of using a single energy source. The energy-saving characteristics of the hybrid system can be displayed after analyzing its system structure and performances. In order to validate the advantages of this presented system, the dynamic models of the system components are established in a MATLAB/Simulink environment, and initial and improved power management strategies with rule-based algorithms are developed. Then, the hybrid system is simulated based on the models and control strategies over the urban dynamometer driving schedule driving cycle. The simulation results show that the fuel consumption employing the initial power management strategy is 12.49 L/100 km, and there is a significant decrease with around 13.6% based on the improved strategy. The results also verify that the better fuel economy can be achieved by the proposed multi-source system compared to the counterparts under the same operating conditions.


Author(s):  
Olivia Conroy ◽  
Fatima Wurie ◽  
Simon Collin ◽  
Matt Edmunds ◽  
Gerard De Vries ◽  
...  

2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 10109-10109
Author(s):  
Nathalie LeVasseur ◽  
Mark J. Clemons ◽  
Sasha Mazzarello ◽  
Lisa Vandermeer ◽  
Lee Jones ◽  
...  

2010 ◽  
Vol 16 (1) ◽  
pp. 43-51 ◽  
Author(s):  
M.R. Ansorena ◽  
C. del Valle ◽  
V.O. Salvadori

Design and optimization of thermal processing of foods need accurate dynamic models to ensure safe and high quality food products. Transfer functions had been demonstrated to be a useful tool to predict thermal histories, especially under variable operating conditions. This work presents the development and experimental validation of a dynamic model (discrete transfer function) for the thermal processing of tuna fish in steam retorts. Transfer function coefficients were obtained numerically, using commercial software of finite elements (COMSOL Multiphysics) to solve the heat transfer balance. Dependence of transfer function coefficients on the characteristic dimensions of cylindrical containers (diameter and height) and on the sampling interval is reported. A simple equation, with two empirical parameters that depends on the container dimensions, represented the behavior of transfer function coefficients with very high accuracy. Experimental runs with different size containers and different external conditions (constant and variable retort temperature) were carried out to validate the developed methodology. Performance of the thermal process simulation was tested for predicting internal product temperature of the cold point and lethality and very satisfactory results were found. The developed methodology can play an important role in reducing the computational effort while guaranteeing accuracy by simplifying the calculus involved in the solution of heat balances with variable external conditions and emerges as a potential approach to the implementation of new food control strategies leading not only to more efficient processes but also to product quality and safety.


2016 ◽  
Vol 4 (2) ◽  
pp. 70-106 ◽  
Author(s):  
Deepak B B V L ◽  
Pritpal Singh

Purpose – In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different regions going from military applications to activity reconnaissance. The purpose of this paper is to overview a particular sort of UAV called quadrotor or quadcopter. Design/methodology/approach – This paper includes the dynamic models of a quadrotor and the distinctive model-reliant and model-autonomous control systems and their correlation. Findings – In the present time, focus has moved to outlining autonomous quadrotors. Ultimately, the paper examines the potential applications of quadrotors and their part in multi-operators frameworks. Originality/value – This investigation deals with the review on various quadrotors, their applications and motion control strategies.


Author(s):  
Guillermo Becerra ◽  
Luis Alvarez-Icaza ◽  
Alfonso Pantoja-Vázquez

Two control strategies for power flow control in hybrid electric vehicles (HEVs) with parallel configuration and a planetary gear system as a power coupling device between the internal combustion engine and the electric machine are proposed in this paper. The aim of both strategies is to determine, for a given driving cycle, an appropriate mixture of the power provided by the two engines. Performance is measured not only in terms of fuel consumption; driving cycle tracking and preservation of energy in the bank of batteries are also considered. The first strategy, named the PGS strategy as it is designed around the planetary gear system, is heuristic, inspired by bang–bang optimal control formulations and has low computational load, while the second is an optimal one derived from Pontryagin’s minimum principle (PMP). It is shown that, under appropriate choice of the weighting parameters in the Hamiltonian of the PMP, both strategies give very similar results and, therefore, that the PGS strategy corresponds to a feasible solution to an optimization problem. Both strategies can be implemented in real time, however, the PGS strategy is easier to tune. Tuning of the strategies’ parameters is independent of the driving cycle. The power flow control laws are continuous and enforce the use of the internal combustion engine with the maximum possible efficiency. The strategies are tested with simulations of a power train of a hybrid diesel–electric bus subjected to the demands of four representative urban area driving cycles. Although optimization solutions are based on simplified dynamic models, simulation results are verified with more detailed dynamic models of the HEV main subsystems. This allows us to evaluate the accuracy of the results and to verify the hypothesis established in the optimization formulation. Simulation results indicate that both strategies attain good fuel consumption reduction levels.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sreenidhi Srinivasan ◽  
Andrew J. K. Conlan ◽  
Laurel A. Easterling ◽  
Christian Herrera ◽  
Premanshu Dandapat ◽  
...  

More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects (“herd-immunity”) to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50–95% of cumulative cases may be averted over the next 50 years even in high (20–40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.


Sign in / Sign up

Export Citation Format

Share Document