scholarly journals Experimental validation of computational fluid dynamics for solving isothermal and incompressible viscous fluid flow

2020 ◽  
Vol 2 (9) ◽  
Author(s):  
Bilen Emek Abali ◽  
Ömer Savaş

Abstract In order to validate a computational method for solving viscous fluid flows, experiments are carried out in an eccentric cylindrical cavity showing various flow formations over a range of Reynolds numbers. Especially, in numerical solution approaches for isothermal and incompressible flows, we search for simple experimental data for evaluating accuracy as well as performance of the computational method. Verification of different computational methods is arduous, and analytic solutions are only obtained for simple geometries like a channel flow. Clearly, a method is expected to predict different flow patterns within a cavity. Thus, we propose a configuration generating different flow formations depending on the Reynolds number and make the experimental results freely available in order to be used as an assessment criterion to demonstrate the reliability of a new computational approach.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Ekaterina Vachagina ◽  
Nikolay Dushin ◽  
Elvira Kutuzova ◽  
Aidar Kadyirov

The development of analytical methods for viscoelastic fluid flows is challenging. Currently, this problem has been solved for particular cases of multimode differential rheological equations of media state (Giesekus, the exponential form of Phan-Tien-Tanner, eXtended Pom-Pom). We propose a parametric method that yields solutions without additional assumptions. The method is based on the parametric representation of the unknown velocity functions and the stress tensor components as a function of coordinate. Experimental flow visualization based on the SIV (smoke image velocimetry) method was carried out to confirm the obtained results. Compared to the Giesekus model, the experimental data are best predicted by the eXtended Pom-Pom model.


SPE Journal ◽  
2019 ◽  
Vol 25 (02) ◽  
pp. 744-758 ◽  
Author(s):  
Jianjun Zhu ◽  
Haiwen Zhu ◽  
Guangqiang Cao ◽  
Jiecheng Zhang ◽  
Jianlin Peng ◽  
...  

Summary As the second most widely used artificial-lift method in petroleum production (and first in accumulative production), electrical submersible pumps (ESPs) increase flow rates by converting kinetic energy to hydraulic pressure. ESPs are routinely characterized with water flow, and water performance curves are provided by the manufacturers (catalog curves) for designing ESP-based artificial-lift systems. However, the properties of hydrocarbon fluids are very different from those of water, especially the dynamic viscosities, which can significantly alter the ESP performance. Most of the existing methods to estimate ESP boosting pressure under high-viscosity fluid flow involve a strong empirical nature, and are derived by correlating experimental/field data with correction factors (e.g., Hydraulic Institute Standards 1955). A universally valid mechanistic model to calculate the ESP boosting pressure under viscous fluid flow is not yet available. In this paper, a new mechanistic model accounting for the viscosity effect of working fluids on ESP hydraulic performance is proposed, and it is validated with a large database collected from different types of ESPs. The new model starts from the Euler equations for characterizing centrifugal pumps, and introduces a conceptual best-match flow rate QBM, at which the outlet flow direction of the impeller matches the designed flow direction. The mismatch of velocity triangles, resulting from the varying liquid-flow rates, is used to derive the recirculation losses. Other head losses caused by flow-direction change, friction, leakage flow, and other factors. are incorporated into the new model as well. QBM is obtained by matching the predicted H-Q performance curve of an ESP with the catalog curves. Once QBM is determined, the ESP hydraulic head under viscous-fluid-flow conditions can be calculated. The specific speed (NS) of the studied ESPs in this paper ranges from 1,600 to 3,448, including one radial-type ESP and two mixed-type designs. The model-predicted ESP boosting pressure with water flow is found to match the catalog curves well if QBM is properly tuned. With high-viscosity fluid presence, the model predictions of ESP boosting pressure also agree well with the corresponding experimental data. For most calculation results within medium to high flow rates, the model prediction error is less than 15%. Unlike the empirical correlations that take experimental data points as inputs, the mechanistic model in this study does not require entering any experimental data, but can predict ESP boosting pressure under viscous fluid flow with a reasonable accuracy.


1977 ◽  
Vol 80 (4) ◽  
pp. 757-767 ◽  
Author(s):  
M. D. Savage

The steady and unifrom flow of a viscous fluid past a unifrom cavity in a gemoetry with small, yet arbitrary, film thickness is considered. A mathematical model for describing steady perturbations to such a flow is presented in which the perturbation to the cavity-fluid interface is represented by a small amplitude harmonic wave of wavenumber n. A linearized perturbation analysis then permits the formulation of a boundary-value problem involving the homogeneous Reynolds equation, the solution to which determines both n and the perturbed pressure field.Numerical and approximate analytic solutions are determined for the cylinderplane geometry in which fluid flows between a rotating cylinder and a Perspex block. Whilst these compare well with experimental data over the whole range \[ 0.1 < \eta U/T < 3, \] closest agreement between theory and experiment is attained for small values of both ηU/T and n.


Author(s):  
Matthias Hieber

This article concentrates on various operator semigroups arising in the study of viscous and incompressible flows. Of particular concern are the classical Stokes semigroup, the hydrostatic Stokes semigroup, the Oldroyd as well as the Ericksen–Leslie semigroup. Besides their intrinsic interest, the properties of these semigroups play an important role in the investigation of the associated nonlinear equations. This article is part of the theme issue ‘Semigroup applications everywhere’.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
E. A. Ashmawy

The unsteady rotational motion of a slip spherical particle with a nonuniform angular velocity in an incompressible viscous fluid flow is discussed. The technique of Laplace transform is used. The slip boundary condition is applied at the surface of the sphere. A general formula for the resultant torque acting on the surface of the sphere is deduced. Special fluid flows are considered and their results are represented graphically.


1997 ◽  
Vol 08 (04) ◽  
pp. 793-803 ◽  
Author(s):  
Yu Chen ◽  
Hirotada Ohashi

The lattice-Bhatnagar-Gross-Krook (BGK) method has been used to simulate fluid flow in the nearly incompressible limit. But for the completely incompressible flows, two special approaches should be applied to the general model, for the steady and unsteady cases, respectively. Introduced by Zou et al.,1 the method for steady incompressible flows will be described briefly in this paper. For the unsteady case, we will show, using a simple numerical example, the need to solve a Poisson equation for pressure.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


Sign in / Sign up

Export Citation Format

Share Document