scholarly journals Impact of machining-induced surface defects on the edge formability of commercially pure titanium sheet at room temperature

2020 ◽  
Vol 2 (12) ◽  
Author(s):  
J. S. Kwame ◽  
E. Yakushina ◽  
P. Blackwell

AbstractDespite the good properties of titanium, which have drawn the interest of various industries over the years, one of the major drawbacks of this material is its poor machinability. This has largely been attributed to its low thermal conductivity and elastic modulus. The ability to attain the optimum sheet edge performance during forming is dependent on the quality of the edges produced. Also, the demanding nature of aerospace part design has provoked the interest of both industry and academia to continually explore avenues tailored at enhancing part performance. The sort of edge surface integrity produced for aerospace part fabrication thus becomes a vital consideration in the quest to ensuring prime performance of components. This work seeks to study the influence of different machining-induced surface defects on the sheet edge performance of CP-Ti (grade 2) at room temperature. Hole expansion test was used to assess the edge surface formability of CP-Ti with different machining-induced edge defects. The research found that machining-induced surface defects act as stress concentration sites during the hole expansion test and have a major impact on the material flow. Electro-discharge machined edges were observed to exhibit high edge formability compared to laser and abrasive water jet cut edges due to the impact of machining-induced microstructural changes.

2020 ◽  
Vol 9 (1) ◽  
pp. 32-37
Author(s):  
J.S Kwame ◽  
E. Yakushina ◽  
P. Blackwell

Hole expansion ratio is a material parameter which defines the extent to which sheet metals are formed. Research has shown that, the stress state observed at the hole edge after hole expansion test is similar to those observed during conventional uniaxial tensile test. However, conventional tensile test methods are not efficient in evaluating material edge formability. This work utilised optical non-contact measuring techniques to examine failure behaviour during tensile test and hole expansion test of commercially pure titanium sheet, fabricated with either abrasive water jet cutting or electric discharge machining. The work found that, the deformation mode in conventional tensile testing are governed by localised necking and subsequently diffused necking prior to failure. Deformation mode observed in hole expansion test is characterised by localised necking with no visible occurrence of diffused necking prior to failure. The highest strains are concentrated at the hole edge during hole expansion test due to their sensitivity to the hole preparation method with accompanying multiple localised necking sites resulting in non-uniform deformation. Strains become concentrated in the bulk material microstructure rather than the machined edge during tensile testing resulting in single localised deformation site and a more homogenous deformation.


2020 ◽  
Vol 321 ◽  
pp. 04027
Author(s):  
J.S. Kwame ◽  
E. Yakushina ◽  
P. Blackwell

Titanium and its alloys are difficult to form, particularly at room temperature, due to their crystallographic structure and limited availability of slip systems. Such limited formability could be exacerbated by virtue of the technique used to cut the sheet. Forming limit diagrams will not necessarily recognize such effects, which can lead to failures during forming trials. An example of a situation where this could be demonstrated is in sheet with pre-fabricated holes. This work used a hemispherical punch to stretch in-plane a 20mm diameter hole prepared with laser, EDM and AWJ cutting techniques in order to quantify the edge formability of the material. It was identified that, the edge surface conditions have a major impact on the edge formability of the material. The edges of the material prepared with EDM showed very high formability tendencies compared with AWJ and laser cutting. The work proposed an alternative characterization method that could be adopted for edge formability assessment.


Author(s):  
Pavan Kumar ◽  
Puneet Tandon

Commercially pure titanium (CP-Ti) Grade-2 has many applications due to its good weldability, strength, ductility, formability, and superior corrosion resistance. Although, CP-Ti Grade-2 can be formed at room temperature, however, it has lower ductility at room temperature. Therefore, heat treatment or thermal activation is required to increase its ductility and formability. In this paper, the process capabilities of CP-Ti Grade-2 to form the components through warm incremental sheet forming (ISF) has been investigated. To identify the optimal temperature at which CP-Ti Grade-2 sheets can be incrementally formed, straight groove tests were performed experimentally at various temperatures. Two geometries, namely, varying wall angle truncated cone, and constant wall angle truncated cone were used as test cases to evaluate the formability of CP-Ti Grade-2, in terms of limiting wall angle. The formability was also assessed through forming limit diagram obtained by Finite Element (FE) simulation. With forming limit damage criterion, fracture in the formed component was predicted with FE simulation using Abaqus Explicit software. To assess the process capabilities of CP-Ti Grade-2 sheet formed through warm ISF, thickness distribution, forming forces, geometrical accuracy, and surface roughness were analyzed through both FE simulation and experimental work.


2020 ◽  
Vol 321 ◽  
pp. 04009
Author(s):  
Min-Su Lee ◽  
Yong-Taek Hyun ◽  
Tea-Sung Jun

In this study, we have investigated the effect of oxygen contents on strain rate senstivitiy (SRS) within Gr. 1 and 4 commercially pure titanium (CP-Ti). The SRS was evaluated in multi-scales using macro-scopic tensile test with constant strain rate (CSR) method and strain rate jump (SRJ) method, and nanoindentation test with SRJ method. Electron backscatter diffraction (EBSD) has been used to characterise crystallographic texture and individual grain orientation of samples. Slip and twin activities of each CP-Ti were compared by EBSD measurements and the associated Schmid factor (SF) analysis. The active slip system is anticipated to be different in each relation between loading directions and textures, but twin activity is much similar. The texture dependent global SRS is thus thought to be resulted from the different slip activity. Local SRS was dependent not only on the grain orientation but also on the oxygen contents, leading to the fact that the impact of oxygen contents is closely correlated in macro- and micro-scopic level.


2010 ◽  
Vol 667-669 ◽  
pp. 779-784
Author(s):  
Xi Rong Yang ◽  
Xi Cheng Zhao ◽  
Xiao Yan Liu

A series of experiments were conducted to evaluate the feasibility that commercially pure titanium (CP-Ti) was pressed for multiple passes by equal channel angular pressing (ECAP) at room temperature. Samples of CP-Ti were processed at room temperature using the dies with channel angles of 90° and 120°, respectively. First, each billet was processed 4 passes by ECAP using a die with an angle of 120° and a ram speed of 0.5mm s-1. And in order to eliminate residual stress, immediate annealing at 473 K for an hour was conducted between two adjacent passes. Second, CP-Ti was successfully processed by ECAP for up to 8 passes using the same die and a ram speed of 2 mm s-1 by controlling the flow of metal. Finally, CP-Ti was successfully achieved using a conventional die with an angle of 90° between the channels at room temperature. Each billet was processed for two passes with a ram speed of 26 mm s-1. These experiments show that CP-Ti may be processed by ECAP at room temperature and special attention was paid on improvements in the yield stress, ultimate strength and micro-hardness of ECAPed-Ti that are slightly higher than the improvements attained after pressing at elevated temperatures.


2018 ◽  
Vol 913 ◽  
pp. 190-195
Author(s):  
Yong Gang Hao ◽  
Peng Lin ◽  
Bao You Zhang ◽  
Xiao Lei Cui ◽  
Chang Jiang Zhang ◽  
...  

The planar anisotropy (PA) and tension-compression asymmetry (TCA) of the commercially pure titanium (CP-Ti) were investigated through uniaxial tension and compression experiments at room temperature. By deep drawing experiment, the formability and the earing profile for the CP-Ti were studied at room temperature. The deep drawing simulations using the hardening rules of uniaxial tensile or compression curves were compared with experimental results. The results show that the CP-Ti has obvious PA, and the plastic strain ratiosr0,r45andr90are 1.47, 1.64 and 2.05, respectively. The CP-Ti sheet shows the tension-compression asymmetry of yielding and hardening. The TCA also shows obvious PA. The tension-compression yield strength ratio of 0°, 45° and 90° to the rolling direction are 1.12, 1.08, 1.04, and the tension-compression hardening exponent ratio are 0.86, 0.8 and 0.62, respectively. The simulative results without considering TCA indicate that the forming force, the wall thickness and earing profile are not in good agreement with the experimental ones. Therefore, the earing appeared in 45° is contribution of the PA and TCA. The TCA will reduce the thickness of the deep drawing parts, increase the earing ratio and affect the drawing force.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2012 ◽  
Vol 548 ◽  
pp. 174-178 ◽  
Author(s):  
Chong Yang Gao ◽  
Wei Ran Lu

By using a dislocation-based plastic constitutive model for hcp metals developed by us recently, the dynamic thermomechanical response of an important industrial material, commercially pure titanium (CP-Ti), was described at different temperatures and strain rates. The constitutive parameters of the material are determined by an efficient optimization method for a globally optimal solution. The model can well predict the dynamic response of CP-Ti by the comparison with experimental data and the Nemat-Nasser-Guo model.


Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


Sign in / Sign up

Export Citation Format

Share Document