scholarly journals Production and characterisation of adsorbents synthesised by hydrothermal carbonisation of biomass wastes

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
E. Danso-Boateng ◽  
A. S. Mohammed ◽  
G. Sander ◽  
A. D. Wheatley ◽  
E. Nyktari ◽  
...  

AbstractSurface structure and chemical properties of adsorbents are important factors required to understand the mechanism of adsorption. The purpose of this study was to produce hydrochars from biomass using hydrothermal carbonisation (HTC) and to analyse their sorption capacities. The biomass used in this study were coco-peat (CP), coconut shell (CS), eggshell (ES), rice husk (RH) and lemon peel (LP). The operating conditions for HTC were 200 °C and 20 h residence time. The characterisation methods consisted of Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Fourier Transform Infrared Ray (FTIR) Spectroscopy, and Brunauer, Emmett and Teller (BET). The results showed that HTC improved the sorption capacities of the biomass wastes. It was found that hydrochars were crispy and flaky with more micro- and meso-porous structures, indicating that lignin and other components were denatured due to carbonisation. This led to the creation of more active sites for sorption and pollutant binding. The hydrochars showed a percentage increase in carbon content and a decrease in oxygen content with traces of other elements, compared to their corresponding raw biomass. The major functional groups identified were –OH and –COOH. The surface area of the hydrochars which include CP (2.14 m2/g), CS (14.04 m2/g), ES (0.50 m2/g), RH (15.74 m2/g), and LP (6.89 m2/g) were significantly improved compared with those of the raw biomass. The study showed that the hydrochars produced from the biomass wastes have the potential to be used as adsorbents.

1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 45-49
Author(s):  
N.E. Jasni ◽  
Khairil Azman Masri ◽  
R.P. Jaya

Porous asphalt mixture is also known as gap graded mixture with less amount of fine aggregate has led the mixture contains high air voids, tends to make the mixture less durable and high porousity. Hence, past researchers has investigate on how to increase the strength of porous asphalt mixture by the addition of additive such as fiber and  nanomaterials. The chemical and physical properties of porous asphalt mixture was highlighted in this paper to compare its structure, the bonding between the materials and its chemical composition that exist. This paper reviews on how additive affect the asphalt mixture in terms of Scanning Electron Microscopy (SEM), X-Ray Diffractions (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). These tests are selected to improve the asphalt mixture according to the morphological and chemical properties of porous asphalt. This study is expected to identify the morphological and chemical composition of the materials in asphalt mixture.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5903
Author(s):  
Gustavo García-Martín ◽  
María I. Lasanta ◽  
María T. de Miguel ◽  
Andre Illana Sánchez ◽  
Francisco J. Pérez-Trujillo

Ternary low melting point mixtures with the addition of LiNO3 and Ca(NO3)2 have been presented as direct system candidates for CSP technologies due to having better physical and chemical properties than those of Solar Salt. In this study, thermal, physical and chemical properties are measured as is the corrosive behavior of stainless alloy VM12 (Cr 12%) when in contact with Solar Salt, 60% NaNO3-40% KNO3 (wt.%) and ternary 46% NaNO3-19% Ca(NO3)2-35% LiNO3 (wt.%). Gravimetric weight change measurements were performed on the test specimens, which were tested under accelerated fluid conditions (0.2 m s−1) at 500 °C for 2000 h. This research confirms the potential of this novel formulation as a thermal storage medium and validates the suitability of ferritic VM12-SHC stainless steel as a structural material for CSP technology with Solar Salt. Meanwhile, the results obtained by scanning electron microscopy and X-ray diffraction indicate a reduction in the protective character of the oxide layer formed on this alloy when the medium contains calcium and lithium components.


2006 ◽  
Vol 530-531 ◽  
pp. 715-719
Author(s):  
L.C. Morais ◽  
Jo Dweck ◽  
E.M. Gonçalves ◽  
Pedro M. Büchler

The aim of this paper was to study the characterization of sludge affected by different thermal treatment, on selected physical and chemical properties. Sludge incinerated ash has been fired at different temperatures. This material was fired at 1050 °C for 3 h and until a peak of 1010°C. After thermal treatment the ash were screened at 200 mesh. The ash was characterized by X-ray fluorescence and trace elements like Cr, Pb, Zn, Cu, and some oxides like quartz(SiO2), Al2O3, P2O5, Fe2O3 were found. Scanning electron microscopy (SEM) has shown one change of particle between 2μm at 90μm and apparent porosity.


2021 ◽  
pp. 16-21

The purpose of this study is study of the physical and chemical properties of the overburden of the Dzherdanak deposit. The chemical and mineralogical composition of the overburden of the Djerdanak deposit has been studied by the methods of X-ray and thermography, electron microscopy and infrared spectroscopy. The main phases are quartz, kaolinite and muscovite. The study of the fine structure of the rock under an electron microscope showed the homogeneity of the rock with pronounced uniform inclusions, which is preserved even after firing. Changes in the rock after firing at 1050 °C have been determined. The formation of mullite at this temperature has been established.


2020 ◽  
Vol 165 ◽  
pp. 06015
Author(s):  
Chao Feng ◽  
Siyuan Yang ◽  
Qiao Li ◽  
Mengbao Zhou ◽  
Songqi Wu ◽  
...  

Based on the detection technology of direct reading spectrum, metallographic microscope and X-ray, the defects of the grid switch castings were analyzed. The four main forms of casting fracture were summarized as poor physical and chemical properties, material misuse, casting defects and designing defects. In order to strengthen the quality control of the source of the product, it was proposed to carry out targeted network inspection in the two stages of material arrival and infrastructure acceptance.


2019 ◽  
Vol 942 ◽  
pp. 40-49
Author(s):  
Yulia Murashkina ◽  
Olga B. Nazarenko

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
P. Barone ◽  
F. Stranges ◽  
M. Barberio ◽  
D. Renzelli ◽  
A. Bonanno ◽  
...  

The optical and chemical properties of Ag/TiO2nanocomposites were investigated to explore the possibilities of incorporating these new materials in Gratzel photoelectrochemical cells. The nanocomposites were obtained doping TiO2, in both allotropic species anatase and rutile, with silver nanoparticles (grown by laser ablation process). X-ray photoelectron data indicate the absence of Ag-Ti chemical bonds, while measurements of photoluminescence and optical absorbance in UV-visible range show a quench in photoluminescence emission of about 50% and an increase in visible absorbance of about 20%. Measurements of optical band gap, obtained by Tauc’s equation, indicate a variation of about 1.6 eV.


Sign in / Sign up

Export Citation Format

Share Document