scholarly journals Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alex Saturday ◽  
Thomas J. Lyimo ◽  
John Machiwa ◽  
Siajali Pamba

AbstractThe current study was carried out to examine the spatial and temporal variations of physicochemical water quality parameters of Lake Bunyonyi. The observations were made on the surface water of Lake Bunyonyi for 1 year to determine the water quality. The basic 12 variables used to determine the quality of water were measured monthly at nine stations. Water temperature, dissolved oxygen (DO), turbidity, electric conductivity (EC), pH and Secchi depth (SD) were measured in the field, while parameters like total nitrogen (TN), total phosphorus (TP), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), soluble reactive phosphorus (SRP) were determined following APHA 2017 standard guidelines for physicochemical analysis. Taking into account standard guidelines for drinking water by the Uganda National Bureau of Standards (UNBS) and the World Health Organization (WHO), the water quality index (WQI) was used to determine the water quality. Temperature, DO, pH, turbidity and EC did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the study months (p < 0.05). Likewise, TN, TP, NO2-N, NO3-N and SRP did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the study months (p < 0.05). The WQI values ranged from 28.36 to 49 across and from 28.2 to 56.2 between study months with an overall mean value of 36.9. The measured water quality variables did not exceed the UNBS and WHO standards for drinking water in all months and at all stations. According to these values, the water quality of Lake Bunyonyi generally belongs to the ‘good’ class in terms of drinking water quality based on the WQI classification. The study findings are fundamentally important for policy makers in setting guidelines for effective lake management.

2021 ◽  
Vol 20 (1) ◽  
pp. 77-85
Author(s):  
Ekrem Mutlu ◽  
◽  
Naime Arslan ◽  
Cem Tokatli ◽  
◽  
...  

Aim of the study: In the present study, the spatial – temporal variations of water quality in Boyalı Pond were analyzed. Water Quality Index (WQI) based on the World Health Organization's standards specified for drinking water, and Water Quality Control Regulations in Turkey (WQCR), as well as certain multi-statistical methods, were used in analyzing the water quality. Material and methods: Water samples were collected from 5 stations selected in the lake on monthly basis in 2019 and 30 water quality parameters were measured in total. Water Quality Index (WQI), Factor Analysis (FA), and Cluster Analysis (CA) were used in order to determine the differences between the spatial and temporal quality levels and to classify the investigated locations. Results and conclusions: According to data observed, Boyalı Dam Lake was found to have Class I and Class II water quality in general the WQI results obtained suggested that, although the water quality was found to significantly decrease in summer months, the reservoir was found to have an "A Grade – Excellent" water quality (<50) in all the months and stations analyzed here. WQI values recorded in the dam lake ranged between 16.4 and 27.8 and the detected limnologic parameters did not exceed the standards specified for drinking water in any of the investigated months and stations (<50 for WQI). As a result of FA, 3 factors explained 88.9% of total variances and as a result of CA, 2 statistical clusters were formed.


2020 ◽  
Vol 4 (2) ◽  
pp. 99
Author(s):  
Yaseen Ahmed Hamaamin ◽  
Jwan Bahadeen Abdullah

Water is vital for all forms of life on earth. Assessing the quality of water especially drinking water is one of the important processes worldwide which affect public health. In this study, the quality of drinking water in Sulaimani City is monitored for a study period of 1 year. A total number of 78 water samples were collected and analyzed for 17 physical and chemical properties of water supply system to the city. Samples of water are collected from the three main sources of drinking water for Sulaimani City (Sarchnar, Dukan line-1, and Dukan line-2) from February to August 2019. The results of physical and chemical parameters of collected water samples were compared with the World Health Organization and Iraqi standards for drinking water quality. The results of this study showed that mostly all parameters were within the standards except the turbidity parameter which was exceeded the allowable standards in some cases. This research concluded that, in general, the quality of drinking water at the three main sources of Sulaimani City is suitable and acceptable for drinking.


2018 ◽  
Author(s):  
Xanthi D. Andrianou ◽  
Chava van der Lek ◽  
Pantelis Charisiadis ◽  
Solomon Ioannou ◽  
Kalliopi N. Fotopoulou ◽  
...  

AbstractCities face rapid changes leading to increasing inequalities and emerging public health issues that require cost-effective interventions. The urban exposome framework constitutes a novel approach in tackling city-wide challenges, such as those of drinking water quality and quality of life. In this proof-of-concept study, we presented part of the urban exposome of Limassol (Cyprus) focusing on chemical and microbial drinking water quality parameters and their association with urban neighborhood indicators. A perceptions study and an urban population study was conducted. We mapped the water quality parameters and participants’ opinions on city life (i.e. neighborhood life, health care and green space access) using quarters (small administrative areas) as the reference unit of the city. In an exploratory environment-wide association study analysis, we used all variables (questionnaire responses and water quality metrics) to describe correlations between them accounting, also, for self-reported health status. Overall, urban drinking-water quality using conventional indicators of chemical (disinfection byproducts-trihalomethanes) and microbial (coliforms, E. coli, and Enterococci) quality did not raise particular concerns. The general health and chronic health status of the urban participants were significantly (all >FDR corrected p value of 0.1) associated with different health conditions such as hypertension and asthma, or having financial issues in access to dental care. Additionally, correlations between trihalomethanes and participant characteristics (e.g. household cleaning, drinking water habits) were documented. This proof-of-concept study showed the potential of using integrative approaches to develop urban exposomic profiles and identifying within-city differentiated environmental and health indicators. The characterization of the urban exposome of Limassol will be expanded via the inclusion of biomonitoring tools and untargeted metabolomics platforms.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 215 ◽  
Author(s):  
Cornelius Sandhu ◽  
Thomas Grischek ◽  
Hilmar Börnick ◽  
Jörg Feller ◽  
Saroj Sharma

There is a nationwide need among policy and decision makers and drinking water supply engineers in India to obtain an initial assessment of water quality parameters for the selection and subsequent development of new riverbank filtration (RBF) sites. Consequently, a snapshot screening of organic and inorganic water quality parameters, including major ions, inorganic trace elements, dissolved organic carbon (DOC), and 49 mainly polar organic micropollutants (OMPs) was conducted at 21 different locations across India during the monsoon in June–July 2013 and the dry non-monsoon period in May–June 2014. At most existing RBF sites in Uttarakhand, Jammu, Jharkhand, Andhra Pradesh, and Bihar, surface and RBF water quality was generally good with respect to most inorganic parameters and organic parameters when compared to Indian and World Health Organization drinking water standards. Although the surface water quality of the Yamuna River in and downstream of Delhi was poor, removals of DOC and OMPs of 50% and 13%–99%, respectively, were observed by RBF, thereby rendering it a vital pre-treatment step for drinking water production. The data provided a forecast of the water quality for subsequent investigations, expected environmental and human health risks, and the planning of new RBF systems in India.


2020 ◽  

Introduction: Given the crisis of water shortage and the industrial development in Iran, comprehensive water-resource management, planning, and serious handling of water quality of the rivers in Iran are the critical issues to tackle with. The concentration of river pollutants is a function of both the quantity and quality of the river flow regime. In this regard, the construction of large dams leads to quantitative and qualitative changes in downstream rivers. These changes are effective in the health of the river environment for such uses as drinking, agriculture, and industry. Accordingly, it is essential to consider the quality of river water in addition to the amount of river water needs. Materials and Methods: This study examined a 22-km long section of the river at the riffle of Taleghan Dam in Alborz Province (103 km from Karaj), Iran. The average annual and monthly discharges of the river in four 6-km-apart stations were estimated. The statistics of eight hydrometric stations and a discharge-surface method were used to calculate the average annual discharge of each sub-basin downstream of Taleghan Dam. Moreover, the discharge non-dimensionalization method, along with the observational statistics of the index station, was used to calculate the average monthly discharge in the examined stations. The Hydrologic Engineering Centers River Analysis System (RAS-HEC) software was then utilized to determine the values ​​of river flow rates hydraulically. Additionally, water quality parameters were compared with the standard concentrations proposed by the World Health Organization (WHO) for drinking-water quality to examine possible changes in pollutant concentrations during the study. Correlation and regression statistical tests in SPSS software (version 24) were then used to analyze the relationship between discharge and pollutant concentration. Results: The experimental equation of Q = 0.0372A0.8641 was obtained to estimate the discharge based on the sub-basins area using the discharge-surface method. The average annual discharge at stations 2, 3, and 4 (B, C, and D) were estimated at 1.39, 2.11, and 3.39 m3/s, respectively, using this equation. Subsequently, the average monthly discharges in the studied stations in September were calculated at 0.21, 0.29, and 0.46 m3/s, respectively. Afterward, the discharge was measured using HEC-RAS software in the same month at 0.34, 0.44, 0, and 0.62 m3/s, respectively. The examination of water quality values from ​​among the 17 water quality parameters revealed that physicochemical elements, pH concentration, lead (Pb), and electrical conductivity were higher than the standard concentration of drinking water proposed by the WHO. Conclusion: A model was presented to estimate sanitary water flow by performing correlation tests and linear regression calculations between the river discharge at the dam downstream and the concentration of water quality parameters. According to the proposed model, the minimum flow of sanitary water was estimated at 1.82 m3/s to be considered to release from the dam in the driest month of the year. Therefore, the release of water as the minimum flow of sanitary water less than 1.82 m3/s was not allowed in any other month of the year.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 414
Author(s):  
Saiful Saiful ◽  
Maurisa Ajrina ◽  
Yusuf Wibisono ◽  
Marlina Marlina

A forward osmosis (FO) membrane was developed from a mixture of chitosan and Dioscorea hispida starch, cross-linked using glutaraldehyde. The cross-linked chitosan/starch membrane was revealed to have high mechanical properties with an asymmetric structure. The prepared membrane’s performance was investigated as an FO filter assembled in a polypropylene water filter bag and aluminum foil plastic. In order to study the FO process, brackish water was used as a feed solution, drawn using three types of solution (fructose, sucrose, and fructose/sucrose mixture, each with 3 M concentration). The maximum water flux (5.75 L/m2 h) was achieved using 3 M sucrose. The cross-linked membrane restrained the ions in the feed with a rejection factor value close to 100%. The water quality parameters were evaluated for the physical, chemical, and biological criteria, such as pH, salinity, conductivity, total dissolved solids (TDS), heavy metals, and Escherichia coli content. The water quality parameters for the FO-processed water met that set by the World Health Organization for drinking water. FO filter bags with cross-linked chitosan/starch membranes can be an option to produce drinking water during an emergency.


2018 ◽  
Vol 4 (10) ◽  
pp. 2345 ◽  
Author(s):  
Shahad Esmaeel Mohammed ◽  
Khalid Adel Abdulrazzaq

In the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009)  to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality parameters along the river have been represented by graphs using Excel.2013 software. The results revealed that the quality of the Euphrates River ranges from “Good” to “Poor”, it enters the Iraqi borders with “Good” water quality and gradually its quality begins to decrease after it receives pollution from many sources such as domestic sewage and different industrial effluents until its quality becomes “Poor” according to the proposed classification. Finally the proposed WQI can be used as a tool to assess the quality of the river with both place and time.


2018 ◽  
Vol 45 ◽  
pp. 00049
Author(s):  
Jana Marková ◽  
Petr Pelikán ◽  
Miloslav Šlezingr

The article concerns the monitoring of selected sources (monitored a total of 10 springs, presented the results of 5 springs) administered by the Forests of the city of Brno in the northern district of Brno-county, describing their current state, including the evaluation of selected water quality parameters. The basis of the study was to measure basic water quality parameters (water temperature, pH, oxygen and measuring the rate of flow of water in springs) and sampling for laboratory analysis. The values obtained were tabulated and graphically evaluated and compared with values in accordance with Decree no. 252/2004 Coll., which lay down the hygienic requirements for drinking water. Based on the measured values charts and graphs were compiled, and the water quality of the individual strands were assessed. The overall condition of wells and their surroundings is described in detail and assessed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Farooque Lanjwani ◽  
Muhammad Yar Khuhawar ◽  
Taj Muhammad Jahangir Khuhawar

AbstractThe study examines the water quality of Shahdadkot, Qubo Saeed Khan and Sijawal Junejo talukas of Qambar Shahdadkot District, less affected by industrial contamination. A total of 38 groundwater samples were collected and analysed for 28 parameters. The results indicated that 57.89% samples were not suitable for drinking purpose with total dissolved solids above than maximum permissible limit of World Health Organization (WHO) (1000 mg/L). The pH, total phosphate, orthophosphate and nitrite were within WHO limits. The concentration of essential metals more than half samples, fluoride in 60.52% and heavy metals 0–50% were contaminated higher than permissible limits of WHO. The statistical analysis of water quality parameters was also carried out to evaluate coefficient of determination among the parameters, cluster analysis and principal component analysis. Water quality determined for irrigation based on Kelly index (KI), sodium percentage (Na%), chloride–sulphate ratio, sodium adsorption ratio, permeability index (PI), chloroalkaline indices 1 (CAI-1), residual sodium carbonate and chloride bicarbonate ratio indicated that samples (55 to 100%) could be used for irrigation purposes. The consumption of water with high concentration of salts and fluoride above the permissible limits may be a cause of a number of diseases in the area.


2019 ◽  
Vol 28 (2) ◽  
pp. 147-158
Author(s):  
Mohammad Saiful Islam ◽  
Romana Afroz ◽  
Md Bodruddoza Mia

This work has been conducted to evaluate the water quality of the Buriganga river. In situ water quality parameters and water samples were collected from 10 locations in January 2016 and analyzed later in laboratory for water quality parameters such as pH, Eh, EC, TDS, cations (Na+, K+, Ca2+, Mg2, As3+), anions (Cl-, HCO3-, NO2-, NO3-, SO42-, F-, Br-, PO43-), heavy metals (Cr2+, Pb2+, Zn2+, Cd+2, Fe2+, Mn2+) to see whether or not the level of these parameters are within the permissible limits. The average values of pH, Eh, EC and temperature were 7.31, –214.9 mV, 928.9 μs/cm and 21.4°C, respectively; the average concentration of Na+, K+, Ca2+, Mg2+, and As3+ were 109.62, 13.38, 46.78, 13.98 and 0.018 mg/l, respectively, while the concentrations of Cl-,HCO3-, PO43-, SO42-, NO3-, NO2-, F and Br -were 79, 331.06, 2.22, 84.32, 0.0254, 0.058, 0.224 and 0.073 mg/l, respectively; and the concentration of heavy metals Pb2+, Zn2+, Fe2+ and Mn2+were 0.28, 0.053, 0.17 and 0.23 mg/l, respectively. The study indicates that most of the parameters are within the permissible limits set by Bangladesh water quality standard. The concentrations of K+, Mn2+, and Pb2+ were beyond the permissible limits meaning that that the water of Buriganga is not safe for drinking. The people living beside Buriganga river should be more cautious about using the polluted/contaminated river water. The concerned authorities should take urgent necessary steps to improve the degraded water quality of the river considering the ecological, environmental and economic implications associated with it. Dhaka Univ. J. Biol. Sci. 28(2): 147-158, 2019 (July)


Sign in / Sign up

Export Citation Format

Share Document