scholarly journals Investigation of surface water quality of the Buriganga river in Bangladesh: Laboratory and spatial analysis approaches

2019 ◽  
Vol 28 (2) ◽  
pp. 147-158
Author(s):  
Mohammad Saiful Islam ◽  
Romana Afroz ◽  
Md Bodruddoza Mia

This work has been conducted to evaluate the water quality of the Buriganga river. In situ water quality parameters and water samples were collected from 10 locations in January 2016 and analyzed later in laboratory for water quality parameters such as pH, Eh, EC, TDS, cations (Na+, K+, Ca2+, Mg2, As3+), anions (Cl-, HCO3-, NO2-, NO3-, SO42-, F-, Br-, PO43-), heavy metals (Cr2+, Pb2+, Zn2+, Cd+2, Fe2+, Mn2+) to see whether or not the level of these parameters are within the permissible limits. The average values of pH, Eh, EC and temperature were 7.31, –214.9 mV, 928.9 μs/cm and 21.4°C, respectively; the average concentration of Na+, K+, Ca2+, Mg2+, and As3+ were 109.62, 13.38, 46.78, 13.98 and 0.018 mg/l, respectively, while the concentrations of Cl-,HCO3-, PO43-, SO42-, NO3-, NO2-, F and Br -were 79, 331.06, 2.22, 84.32, 0.0254, 0.058, 0.224 and 0.073 mg/l, respectively; and the concentration of heavy metals Pb2+, Zn2+, Fe2+ and Mn2+were 0.28, 0.053, 0.17 and 0.23 mg/l, respectively. The study indicates that most of the parameters are within the permissible limits set by Bangladesh water quality standard. The concentrations of K+, Mn2+, and Pb2+ were beyond the permissible limits meaning that that the water of Buriganga is not safe for drinking. The people living beside Buriganga river should be more cautious about using the polluted/contaminated river water. The concerned authorities should take urgent necessary steps to improve the degraded water quality of the river considering the ecological, environmental and economic implications associated with it. Dhaka Univ. J. Biol. Sci. 28(2): 147-158, 2019 (July)

2017 ◽  
Vol 9 (2) ◽  
pp. 97-104
Author(s):  
MMM Hoque ◽  
PP Deb

This study was conducted to know the status of physicochemical water quality parameter and heavy metal concentration in the water of Buriganga river, adjoining to Dhaka city. Water samples were collected from five different points of Buriganga river and were analyzed to determine pH, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), biological oxygen demand (BOD), chromium (Cr), lead (Pb), cadmium (Cd), copper (Cu) and manganese (Mn) content. Most of the measured water quality parameters and concentration of heavy metals were exceeded the standard level set by ECR and ADB. Among heavy metals concentration, level of chromium and cadmium were 4-5 times higher than the standard drinking level, these results indicate that surrounding industrial wastewater discharging from textile and tannery industries, which pollute the Buriganga river water. During the observation, at Hazaribagh station BOD level was found 32 times higher than drinking water standard level and 6 times higher than standard irrigation level, indicating Buriganga river water is extremely polluted by microorganism and is not suitable for household and irrigational use. Similarly, DO level at Buriganga river water was 5 times lower than the standard level, which indicates that Buriganga river water is extremely polluted and is unsuitable for aquatic life which are dependent on DO for their sustain. In the present study, the measured level of EC, chromium, cadmium and copper were found higher level as compare to the previous studies.J. Environ. Sci. & Natural Resources, 9(2): 97-104 2016


2021 ◽  
Vol 16 (2) ◽  
pp. 540-550
Author(s):  
Anuja Bhardwaj ◽  
Rajeev Kumar Aggarwal ◽  
Satish Kumar Bhardwaj

A study was conducted to evaluate the spatial and seasonal variation in the quality of the surface water sources along national highway, state highway and link road. Physicochemical properties of water were estimated using water samples collected during the pre-monsoon, monsoon, and post-monsoon seasons in the year 2018 and 2019. The water quality parameters (pH, EC, Turbidity, TDS, BOD, COD, Cl-, NO3- and heavy metals) were calculated. The investigation revealed that pH (6.91-7.35), EC (0.17-0.29 dS m-1), TDS (140.12-175.54 mg l-1), Turbidity (2.34-3.87 NTU), BOD (2.25-2.89 mg l-1), COD (13.49-20.19 mg l-1), Cl- (14.36-30.15 mg l-1), NO3- (3.12-4.89 mg l-1) and various heavy metals were within permissible limits and varied significantly (p<0.05) on spatial variations. Maximum effects of vehicular emissions along the roadside water bodies were observed at NH followed by SH and minimum was noticed at LR. Among the seasons, maximum values of water quality parameters were observed during pre-monsoon season followed by monsoon and then post-monsoon.


1998 ◽  
Vol 37 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Torben Larsen ◽  
Kirsten Broch ◽  
Margit Riis Andersen

The paper describes the results of measurements from a 2 year period on a 95 hectare urban catchment in Aalborg, Denmark. The results of the rain/discharge measurements include 160 storm events corresponding to an accumulated rain depth of totally 753 mm. The water quality measurements include 15 events with time series of concentration of SS, COD, BOD, total nitrogen and total phosphorus. The quality parameters showed significant first flush effects. The paper discusses whether either the event average concentration or the accumulated event mass is the most appropriate way to characterize the quality of the outflow.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Farooque Lanjwani ◽  
Muhammad Yar Khuhawar ◽  
Taj Muhammad Jahangir Khuhawar

AbstractThe study examines the water quality of Shahdadkot, Qubo Saeed Khan and Sijawal Junejo talukas of Qambar Shahdadkot District, less affected by industrial contamination. A total of 38 groundwater samples were collected and analysed for 28 parameters. The results indicated that 57.89% samples were not suitable for drinking purpose with total dissolved solids above than maximum permissible limit of World Health Organization (WHO) (1000 mg/L). The pH, total phosphate, orthophosphate and nitrite were within WHO limits. The concentration of essential metals more than half samples, fluoride in 60.52% and heavy metals 0–50% were contaminated higher than permissible limits of WHO. The statistical analysis of water quality parameters was also carried out to evaluate coefficient of determination among the parameters, cluster analysis and principal component analysis. Water quality determined for irrigation based on Kelly index (KI), sodium percentage (Na%), chloride–sulphate ratio, sodium adsorption ratio, permeability index (PI), chloroalkaline indices 1 (CAI-1), residual sodium carbonate and chloride bicarbonate ratio indicated that samples (55 to 100%) could be used for irrigation purposes. The consumption of water with high concentration of salts and fluoride above the permissible limits may be a cause of a number of diseases in the area.


2019 ◽  
Vol 31 (3) ◽  
pp. 515-521
Author(s):  
Gurjeet Kaur ◽  
Sangeeta Sharma ◽  
Umesh Kumar Garg

Malwa region of Punjab state, India has become the center of water borne diseases due to excessive use of pesticides, chemical fertilizers, heavy metals, industrial toxins that cause toxicity in water. The main contamination in ground water is by physico-chemical parameters and heavy metals i.e. pH, total dissolved solids, total alkalinity, total hardness, calcium, chlorides, fluorides, arsenic and lead. The contamination of ground water with heavy metals causes health hazards to humans and animals. Due to lack of adequate facilities and resources for the management and handling of waste, the ground water contamination has been increased. In the present study, assessment of ground water quality was carried out in the villages of Ferozepur district of Punjab state, India. With main emphasis on analyzing the groundwater parameters of Ferozepur district which are responsible for health hazard to humans and animals. Various groundwater samples were collected randomly from the villages of Ferozepur district and analyzed for pH, total dissolved solids, total alkalinity, total hardness, calcium, chlorides, fluorides, heavy metals (arsenic and lead) using standard procedures. The concentrations of calcium, chlorides, fluorides and pH were within the permissible limits, whereas, alkalinity and total hardness were observed beyond permissible limits in most of the water samples. Even among majority of the samples taken, the concentration of arsenic and lead was found within the permissible limits. Results showed that the ground water samples collected from depth ranging from 100 to 360 ft, recorded values within permissible limits for drinking purpose as prescribed by WHO. Further, ANOVA has been applied on analysis results to study the effect of pH on fluoride and chloride, depth on fluoride and chloride and depth on arsenic and lead. Also, to adjudge the overall quality of water in Ferozepur district, the water quality index (WQI) has been calculated on the basis of large number of physico-chemical characteristics of water. The water quality index of ground water in Ferozepur district has been calculated to be 107. The value is close to 100 so the quality of ground water in Ferozepur district can be categorized under 'Good Quality' water.


2014 ◽  
Vol 48 (1) ◽  
pp. 204-212 ◽  
Author(s):  
Jingxi Li ◽  
Li Zheng ◽  
Xiaofei Yin ◽  
Junhui Chen ◽  
Bin Han ◽  
...  

Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


Author(s):  
Romana Rima ◽  
Abdullah Al Ryhan ◽  
Sony Ahmed ◽  
Rafiq Islam ◽  
Sharif Hossain Munshi ◽  
...  

The Meghna River is one of the most important rivers in Bangladesh, one of the three rivers, the Ganges delta, and the largest delta in the world in the Bay of Bengal. The water quality of Meghna has become a matter of concern due to serious levels of pollution. The present study was conducted to assess the surface water quality of upstream of the Meghna River using physic-chemical parameters in summer and winter season at five different points. Water quality was evaluated by laboratory analysis considering a total of six water quality parameters, pH, DO, BOD, COD, salinity and TDS and water samples were collected from five stations. The study indicates that some parameters exceed the permissible limit for drinking purpose, it may cause potential threat to the human, but the water of this river is not immediate threat to human or ecosystem.


2021 ◽  
Vol 6 (4) ◽  
pp. 40-49
Author(s):  
Nur Natasya Mohd Anuar ◽  
Nur Fatihah Fauzi ◽  
Huda Zuhrah Ab Halim ◽  
Nur Izzati Khairudin ◽  
Nurizatul Syarfinas Ahmad Bakhtiar ◽  
...  

Predictions of future events must be factored into decision-making. Predictions of water quality are critical to assist authorities in making operational, management, and strategic decisions to keep the quality of water supply monitored under specific criteria. Taking advantage of the good performance of long short-term memory (LSTM) deep neural networks in time-series prediction, the purpose of this paper is to develop and train a Long-Short Term Memory (LSTM) Neural Network to predict water quality parameters in the Selangor River. The primary goal of this study is to predict five (5) water quality parameters in the Selangor River, namely Biochemical Oxygen Demand (BOD), Ammonia Nitrogen (NH3-N), Chemical Oxygen Demand (COD), pH, and Dissolved Oxygen (DO), using secondary data from different monitoring stations along the river basin. The accuracy of this method was then measured using RMSE as the forecast measure. The results show that by using the Power of Hydrogen (pH), the dataset yielded the lowest RMSE value, with a minimum of 0.2106 at station 004 and a maximum of 1.2587 at station 001. The results of the study indicate that the predicted values of the model and the actual values were in good agreement and revealed the future developing trend of water quality parameters, showing the feasibility and effectiveness of using LSTM deep neural networks to predict the quality of water parameters.


2018 ◽  
Vol 18 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Sulata Kar ◽  
Papia Das ◽  
Uma Das ◽  
Maibam Bimola ◽  
Devashish Kar ◽  
...  

AbstractThe zooplankton assemblage of selected wetlands of Assam, India was assessed to deduce the structural variation in the context of water quality parameters. A two year study between 2012 and 2014 comprising of 530 samples from the five wetlands revealed the presence of 46 taxa, 26 Rotifera, 15 Cladocera, 4 Copepoda and 1 Ostracoda, in varying density. The rotifers dominated in terms of abundance (48 ind. cm−3) followed by the cladocerans (28 ind. cm−3) and the copepods (19 ind. cm−3) and showed significant (p <0.05) correlations with turbidity, alkalinity, hardness and phosphate contents of the water samples. The diversity and the richness of the zooplankton showed an increasing trend with the water temperature. Among the different taxa, Brachionus sp. was most abundant followed by Mesocyclops sp. while Beauchampiella sp. was represented in the least numbers. Application of the cluster analysis allowed the segregation of the different zooplankton based on the similarities of abundance in the samples. The water quality parameters like temperature, alkalinity, turbidity, magnesium and calcium were observed to be significant contributors in shaping the zooplankton community composition of the wetlands, revealed through the correlations and canonical correspondence analysis. As an extension, the information can be used in monitoring the quality of the freshwater habitats of the concerned and similar geographical regions, using the zooplankton as the major constituents. The variations in the abundance of cladoceran, copepod and rotifer zooplanktons can be used to understand the mechanisms that sustain the food webs of the aquatic community of the freshwater bodies.


Sign in / Sign up

Export Citation Format

Share Document