scholarly journals Removal of wood extractives as pulp (pre-)treatment: a technological review

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Maximilian Lehr ◽  
Martin Miltner ◽  
Anton Friedl

AbstractWood extractives usually do not exceed five percent of dry wood mass but can be a serious issue for pulping as well as for the pulp itself. They cause contamination and damages to process equipment and negatively influence pulp quality. This paper addresses not only the extractives-related problems but also different solutions for these issues. It is an extensive review of different technologies for removing wood extractives, starting with methods prior to pulping. Several wood yard operations like debarking, knot separation, and wood seasoning are known to significantly decreasing the amount of wood extractives. Biological treatment has also been proven as a feasible method for reducing the extractives content before pulping, but quite hard to handle. During pulping, the extractives reduction efficiency depends on the pulping method. Mechanical pulping removes the accessory compounds of wood just slightly, but chemical pulping, on the other hand, removes them to a large extent. Organosolv pulping even allows almost complete removal of wood extractives. The residual extractives content can be significantly reduced by pulp bleaching. Nevertheless, different extraction-based methods have been developed for removing wood extractives before pulping or bleaching. They range from organic-solvent-based extractions to novel processes like supercritical fluid extractions, ionic liquids extractions, microwave technology, and ultrasonic-assisted extraction. Although these methods deliver promising results and allow utilization of wood extractives in most cases, they suffer from many drawbacks towards an economically viable industrial-scale design, concluding that further research has to be done on these topics. Graphical abstract

Author(s):  
Sayed Rashad ◽  
Ghadir El-Chaghaby ◽  
Eder C. Lima ◽  
Glaydson Simoes dos reis

AbstractUltrasonic-assisted extraction (UAE) is increasingly emerging as a highly effective extraction technique. This extraction technique is affected by several experimental factors. The present work aimed to optimize the ultrasonic-assisted extraction of antioxidants from Ulva lactuca (sea lettuce), widespread macroalgae growing along the Mediterranean coast. In this respect, a full-factorial design (23) was employed to assess the effect of three different factors at two levels and their interactions on the extraction of antioxidants from sea lettuce algal biomass. The studied factors were extraction solvent, time of extraction, and temperature. The two levels chosen for extraction solvent were 100% ethanol and 50% ethanol, for the sonication time (1 h and 3 h) and temperature (25 °C and 40 °C). All experiments were done using an ultrasonic bath, and the biomass to solvent ratio was kept at 1:5. Total antioxidant capacity and quercetin concentration were set as the two responses for optimum output. The results showed that the temperature and solvent were the dominating factors that significantly affect the extraction process. The optimum extraction parameters were extraction time of 1 h, 50% ethanol, and temperature of 25 °C. Under these conditions, the maximum value for TAA was calculated as 2166.51 mg of ascorbic acid equivalent per gram (mg/g of AAE), and quercetin showed a maximum calculated value of 42.5 mg/g with combined desirability of 0.91 for the two responses. The present study results indicate that U. lactuca can be used as a source of antioxidants and phenolic compounds that can be applied in food and medicine at optimum extraction conditions. Graphical abstract


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110206
Author(s):  
Yongshuai Jing ◽  
Ruijuan Zhang ◽  
Lan Li ◽  
Danshen Zhang ◽  
Yu Liu ◽  
...  

In this study, response surface methodology (RSM) was used to optimize the ultrasonic-assisted extraction parameters of Sojae Semen Praeparatum polysaccharides (SSPP-80), the optimum conditions were determined as follows: ultrasonic frequency of 100 W, ultrasonic power of 80 Hz, ultrasonic temperature of 52℃, ultrasonic time of 23 minutes, and liquid to raw material ratio of 40 mL/g. Based on these conditions, polysaccharides extraction rate was 7.72% ± 0.26%. Then, 2 novel polysaccharides (SSPP-80‐1, SSPP-80‐2) were isolated from SSPP by DEAE-cellulose 52 chromatography. The chemical compositions, physicochemical properties, and structure of SSPPs were investigated by simultaneous thermal analyzer (TGA), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FI-IR), and high-performance liquid chromatography (HPLC). The results showed that SSPP-80 and 2 fractions were mainly composed of mannose (Man), glucose (Glc), galactose (Gal), xylose (Xyl), and arabinose (Ara). In addition, the antioxidant activities were evaluated against the DPPH and hydroxyl radical in vitro, the IC50 of SSPP-80, SSPP-80‐1 and SSPP-80‐2 against DPPH free radical were 4.407, 8.267, and 5.204 mg/mL, respectively, whereas the IC50values for removing hydroxyl groups were 5.318, 3.516, and 4.016 mg/mL, respectively. It demonstrated that SSPP-80 and 2 fractions had certain antioxidant activity. Theoretical basis for use of Sojae Semen Praeparatum polysaccharides was provided by this study.


Sign in / Sign up

Export Citation Format

Share Document