Phosphorus Pools in Acid Sulfate Soil Are Influenced by pH, Water Content, and Addition of Organic Matter

Author(s):  
Sonia Mayakaduwage ◽  
Luke M. Mosley ◽  
Petra Marschner
Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 515 ◽  
Author(s):  
Nicholas J. Ward ◽  
Leigh A. Sullivan ◽  
Richard T. Bush

Four acid sulfate soil (ASS) materials were subjected to anoxia after varying periods of oxidation to determine the geochemical response of these types of soils to flooding. The response of the partially oxidised ASS materials to the exclusion of oxygen was variable. The rate of sulfide oxidation, acidification, and the production of soluble oxidation products such as sulfate, iron, and aluminium generally decreased markedly when subjected to anoxia. However, especially in the highly acidic ASS materials (i.e. pH <3.5), sulfide oxidation and acidification generally continued (albeit at much slower rates), most probably due to oxidation by Fe3+. Rapid sulfide re-formation occurred in the peat ASS material that had been oxidised for 63 days, with 0.47% reduced inorganic sulfur (SCR) formed over 60 days of anoxia. This substantial sulfide re-formation was accompanied by only a slight increase in pH. Minimal sulfide re-formation occurred in 2 of the ASS materials when placed in anoxic conditions, most likely due to a lack of readily available organic matter in these materials. The results show that the imposition of anoxic conditions on partially oxidised ASS materials is generally effective in decreasing the rates of further sulfide oxidation, acidification, and the production of soluble sulfide oxidation products. Biogeochemical sulfide formation consumes acidity; however, sulfide re-formation was ineffective in reversing acidification under the conditions of this experiment. The results indicate that the treatment of sites containing actual ASS materials by management strategies relying on oxygen exclusion need to be accompanied by other strategies that include acidty neutralisation or containment.


2020 ◽  
Vol 20 ◽  
pp. 01006
Author(s):  
Yuli Lestari ◽  
Eni Maftu’ah ◽  
Wahida Annisa

High acidity in acid sulfate soils due to pyrite oxidation results in increased Al3+ and Fe2+ activity which inhibits the growth of rice plants. The application of organic matter (compost) is one of the technology to manage acid sulfate soil. This study aims to obtain cellulolytic bacterial isolates that are superior in composting and improving rice growth in acid sulfate soil. The experiment carries out in the laboratory and glasshouse of the Indonesian Swampland Agriculture Research Institute (ISARI), Banjarbaru, Indonesia on May-November 2017. The experimental to obtain cellulolytic bacteria and water content that can accelerate composting is arranged by factorial using a complete randomized design with three replication First factor were cellulolytic bacteria application (without application/control, BS 1.6, BS 1.9, BS 2.2 and BS 2.5), while the second factor was water content (50%, 100%, and 150%). The effect of compost application with cellulolytic bacterial to rice growth arranged by factorial completely randomized design with 3 replications. The first factor was cellulolytic bacteria application (without application/control, BS 1.6, BS 1.9, and BS 2.2), while the second factor was composting condition (muddy waterlogged and waterlogged 5 cm depth). The result showed that the ability of cellulolytic bacteria to reduce C/N straw was not different. Only differences in water content affect the reducing C/N ratio of straw. The average C/N ratio of straw compost made with 50%, 100%, and 150% water content is 35.59; 29.71, and 29.21. Application of compost made under muddy waterlogged and inoculated BS1.9 and BS2.2 can increase the number of tillers, while those inoculated BS1.6 and BS1.9 can increase the rice shoot dry weight of Inpara 2. The suggest that cellulolytic bacterial inoculation can improve the quality of compost so that the growth of rice is better.


Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 667 ◽  
Author(s):  
Crystal A. Maher ◽  
Leigh A. Sullivan ◽  
Nicholas J. Ward

This study provides a systematic analysis of the effect of common acid sulfate soil (ASS) sample pre-treatments (namely freezing, oven drying, and grinding) on chromium-reducible sulfur (SCR) and water-soluble sulfate determinations. The results show that oven drying and hand grinding of the samples prior to analysis resulted in a decrease in SCR (i.e. up to 20% compared to those of frozen samples). This lower SCR value was partly due to the oxidation of sulfides in the oven. For oven-dried ASS materials, more intensive grinding in a ring mill increased SCR values, most likely by abrading coatings from pyrite grains. For oven-dried mineral ASS materials the highest SCR values were obtained with 1 min of ring mill grinding, but for soils with appreciable organic matter (such as peat), 5 min of ring mill grinding gave the highest values. The results indicate that for some ASS materials, oven drying, regardless of the ensuing grinding procedure, results in underestimated SCR values. This study also demonstrates that an artifact of oven drying ASS materials can be greatly increased water-soluble sulfate contents.


2009 ◽  
Vol 4 (1) ◽  
pp. 125
Author(s):  
Akhmad Mustafa ◽  
Rachmansyah Rachmansyah ◽  
Dody Dharmawan Trijuno ◽  
Ruslaini Ruslaini

Rumput laut (Gracilaria verrucosa) telah dibudidayakan di tambak tanah sulfat masam dengan kualitas dan kuantitas produksi yang relatif tinggi. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengetahui peubah kualitas air yang mempengaruhi laju pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur Provinsi Sulawesi Selatan. Pemeliharaan rumput laut dilakukan di 30 petak tambak  terpilih selama 6 minggu. Bibit rumput laut dengan bobot 100 g basah ditebar dalam hapa berukuran 1,0 m x 1,0 m x 1,2 m. Peubah tidak bebas yang diamati adalah laju pertumbuhan relatif, sedangkan peubah bebas adalah peubah kualitas air yang meliputi: intensitas cahaya, salinitas, suhu, pH, karbondioksida, nitrat, amonium, fosfat, dan besi. Analisis regresi berganda digunakan untuk menentukan peubah bebas yang dapat digunakan untuk memprediksi peubah tidak bebas. Hasil penelitian menunjukkan bahwa laju pertumbuhan relatif rumput laut di tambak tanah sulfat masam berkisar antara 1,52% dan 3,63%/hari dengan rata-rata 2,88% ± 0,56%/hari. Di antara 9 peubah kualitas air yang diamati ternyata hanya 5 peubah kualitas air yaitu: nitrat, salinitas, amonium, besi, dan fosfat yang mempengaruhi pertumbuhan rumput laut secara nyata. Untuk meningkatkan pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur dapat dilakukan dengan pemberian pupuk yang mengandung nitrogen untuk meningkatkan kandungan amonium dan nitrat serta pemberian pupuk yang mengandung fosfor untuk meningkatkan kandungan fosfat sampai pada nilai tertentu, melakukan remediasi untuk menurunkan kandungan besi serta memelihara rumput laut pada salinitas air yang lebih tinggi, tetapi tidak melebihi 30 ppt.Seaweed (Gracilaria verrucosa) has been cultivated in acid sulfate soil-affected ponds with relatively high quality and quantity of seaweed production. A research has been conducted to study water quality variables that influence the growth of seaweed in acid sulfate soil-affected ponds of Angkona Sub-district East Luwu Regency South Sulawesi Province. Cultivation of seaweed was done for six weeks in 30 selected brackishwater ponds. Seeds of seaweed with weight of 100 g were stocked in hapa sized 1.0 m x 1.0 m x 1.2 m. Dependent variable that was observed was specific growth rate, whereas independent variables were water quality variables including light intensity, salinity, temperature, pH, carbondioxide, nitrate, ammonium, phosphate, and iron. Analyses of multiple regressions were used to determine the independent variables which could be used to predict the dependent variable. Research result indicated that relative growth rate of seaweed in acid sulfate soils-affected brackishwater ponds ranged from 1.52% to 3.63%/day with 2.88% ± 0.56%/day in average. Among nine observed water quality variables, only five variables namely: nitrate, salinity, ammonium, phosphate and iron influence significantly on the growth of seaweed in acid sulfate soils-affected brackishwater ponds. The growth of seaweed in acid sulfate soils-affected brackishwater ponds of Angkona District East Luwu Regency, can be improved by using nitrogen-based fertilizers to increase ammonium and nitrate contents and also fertilizers which contain phosphorus to improve phosphate content to a certain level. Pond remediation to decrease iron content and also rearing seaweed at higher salinity (but less than 30 ppt) can also be alternatives to increase the growth of seaweed.


1996 ◽  
Vol 46 (2) ◽  
pp. 103-109 ◽  
Author(s):  
A. Jugsujinda ◽  
J. Prasittikhet ◽  
R. D. DeLaune ◽  
C. W. Lindau ◽  
R. P. Gambrell

Author(s):  
Jiachen Zeng ◽  
Bo Feng ◽  
De Wei ◽  
Runli Tao ◽  
Baolin Shi ◽  
...  

2014 ◽  
Vol 11 (8) ◽  
pp. 2201-2209 ◽  
Author(s):  
O. Monga ◽  
P. Garnier ◽  
V. Pot ◽  
E. Coucheney ◽  
N. Nunan ◽  
...  

Abstract. This paper deals with the simulation of microbial degradation of organic matter in soil within the pore space at a microscopic scale. Pore space was analysed with micro-computed tomography and described using a sphere network coming from a geometrical modelling algorithm. The biological model was improved regarding previous work in order to include the transformation of dissolved organic compounds and diffusion processes. We tested our model using experimental results of a simple substrate decomposition experiment (fructose) within a simple medium (sand) in the presence of different bacterial strains. Separate incubations were carried out in microcosms using five different bacterial communities at two different water potentials of −10 and −100 cm of water. We calibrated the biological parameters by means of experimental data obtained at high water content, and we tested the model without changing any parameters at low water content. Same as for the experimental data, our simulation results showed that the decrease in water content caused a decrease of mineralization rate. The model was able to simulate the decrease of connectivity between substrate and microorganism due the decrease of water content.


Sign in / Sign up

Export Citation Format

Share Document