scholarly journals Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor

2021 ◽  
Author(s):  
Kyu Seok Lee ◽  
Ye Ji Seo ◽  
Hyeon Taek Jeong

AbstractIn this report, we incorporate activated carbon (AC) onto aluminum substrate via doctor blade method to produce an all-solid-state supercapacitor. The electrochemical properties of the all-solid-state supercapacitor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Galvanostatic charge/discharge tests also were carried out to exhibit stability of the AC-based supercapacitor. The impedance and charge/discharge curves of the all-solid-state supercapacitor showed good capacitive behavior after functionalized AC. The highest specific capacitance obtained for the AC-based supercapacitor was 106 F g−1. About 160% of specific capacitance increased after functionalization of the AC, which indicated that modification of the AC by nitric acid was able to introduce functional groups on the AC and improve its electrochemical performances.

2021 ◽  
Author(s):  
Kyu Seok Lee ◽  
Ye Ji Seo ◽  
Hyeon Taek Jeong

AbstractIn this study, we investigated that the activated carbon (AC)-based supercapacitor and introduced SIFSIX-3-Ni as a porous conducting additive to increase its electrochemical performances of AC/SIFSIX-3-Ni composite-based supercapacitor. The AC/SIFSIX-3-Ni composites are coated onto the aluminum substrate using the doctor blade method and conducted an ion-gel electrolyte to produce a symmetrical supercapacitor. The electrochemical properties of the AC/SIFSIX-3-Ni composite-based supercapacitor are evaluated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests (GCD). The AC/SIFSIX-3-Ni composite-based supercapacitor showed reasonable capacitive behavior in various electrochemical measurements, including CV, EIS, and GCD. The highest specific capacitance of the AC/SIFSIX-3-Ni composite-based supercapacitor was 129 F g−1 at 20 mV s−1.


2013 ◽  
Vol 302 ◽  
pp. 158-164 ◽  
Author(s):  
Ya Jie Li ◽  
Xing Yuan Ni ◽  
Jun Shen ◽  
Dong Liu ◽  
Nian Ping Liu

The electrochemical performances of resorcinol–formaldehyde-based carbon aerogels can be significantly enhanced by nitric acid activation.FT-IR spectra and SEM images reveal the constitution and morphology of samples .The electrochemical performances of materials were tested by cyclic voltammetry,galvanostatic charge/discharge test ,electrochemical impedance spectroscopy and cyclic test. The results show that activation does not influence the molecular structure of carbon aerogels,which maintains their nano-porous structure. Activation increases the specific capacitance by 50% and improves the conductivity of carbon aerogels,resulting in fenfect cycling stability. So nitric acid activated carbon aerogels is an ideal electrode material for supercapacitors.


2019 ◽  
Vol 39 (3) ◽  
pp. 228-238 ◽  
Author(s):  
Preetam Bhardwaj ◽  
Shivani Kaushik ◽  
Preeti Gairola ◽  
S.P. Gairola

Abstract Composites with thin layers of polyaniline (PANI) draped on the surface of a hybrid carbon (HC) array or assemblage were prepared by the oxidative polymerization route. The carbon array substrate is a consistent network architecture of carbon nanotubes and graphene, with the benefit of elevated conductivity and surface area of the carbon components. The exceptional improved electrochemical performances of PANI enfolded HC array electrodes are due to the synergistic effect of the pseudocapacitance of PANI and the electric double layer capacitance of the carbon array. The supercapacitive characteristics of composite materials were inspected by using cyclic voltammetry, the galvanostatic charge-discharge test and electrochemical impedance analysis. The 025PANI-HC composite sample revealed a maximum specific capacitance of 1397.82 F g−1 at a scan rate of 5 mV s−1 and 1430 F g−1 at 1 A g−1 from galvanostatic charge-discharge data, respectively, in 1 m H2SO4. The composites exhibited a much larger specific capacitance value than pristine PANI. Also, the 025PANI-HC electrode had an unwavering operation and its specific capacitance retention was 89%, even after 5000 charge-discharge cycles at 1 A g−1.


2010 ◽  
Vol 97-101 ◽  
pp. 1582-1585 ◽  
Author(s):  
Yan Hong Tian ◽  
Bo Rong Wu ◽  
Ding Wen Mao

Activated carbon (AC)/polyaniline (PANI) composite electrode materials were synthesized in this article. The effect of preparation such as BET surface area and porous size of AC on the electrochemical performances of AC/PANI composite material was investigated. The electrochemical performances of the composite were tested with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectrometry in 6mol/L KOH solution using Hg/HgO as reference electrode. Composite surface morphology was examined by scanning electron microscope (SEM). The result shows that when the ratio of AC to aniline increases, the conversion of aniline and the capacitance value of composite also increase in keeping the ratio of AC to aniline constant. When AC: aniline : (NH4)2S2O8 =7:1:1, the conversion of aniline up to more than 95% and the capacitance value of electrode materials increased from 239F/g(pure AC) to 409F/g, which is 71.1% higher than pure AC. Pore structure of AC also has great effect on electrochemical performances of electrode material. With the increase of proportion of mesoporous, the electrochemical properties of composite are greatly increased.


2010 ◽  
Vol 663-665 ◽  
pp. 568-571
Author(s):  
Ren Qing Wang ◽  
Qin Fang ◽  
Mei Gen Deng

Activated carbon was fabricated by using phenolic resin as carbon source, tween-80 as organic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that specific surface area of the prepared sample was 1935.99 m2/g, pore size was mainly in the range of 1.0~4.0 nm and showed typical capacitance characteristics in cyclic voltammetry. At a current density of 15mA/cm2, a specific capacitance of 246.18F/g was achieved and the resistance was 1.11Ω. Supercapacitors based on the sample had low ESR and excellent power property.


2011 ◽  
Vol 239-242 ◽  
pp. 1372-1375 ◽  
Author(s):  
Ya Kun Zhang ◽  
Jian Ling Li ◽  
Fei Gao ◽  
Xin Dong Wang

A layer of MnO2 was loaded between the SnO2/Ti substrate and the layer of PANI via a potentiodynamic electrodeposition. Electrochemical tests such as cyclic voltammetry and galvanostatic charge/discharge were applied to investigate the performance of the electrodes. The morphologies of the electrodes were also observed to identify the effect of the MnO2 layer. The specific capacitance of PANI with MnO2 reached to 601.48 F g-1 at a current density of 0.1 mA cm-2, which is 1.69 times as that of PANI electrodes without MnO2 layer. This gratifying result may due to the synergistic effect between MnO2 layer and PANI.


2015 ◽  
Vol 719-720 ◽  
pp. 137-140
Author(s):  
Ren Li Yang ◽  
Jun Shuang Zhou ◽  
Li Hou ◽  
Yu Feng Zhao ◽  
Fa Ming Gao

BCN nanoparticles sandwiched between carbon nanosheets were synthesized with the P123 and borate ammonium under nitrogen atmosphere. The samples were characterized by SEM, TEM, and EELS. The SEM and TEM images show BCN nanoparticles are attached on the carbon nanosheets. Cyclic voltammetry (CV) and galvanostatic charge-discharge measurements are used to evaluate electrochemical properties of the composites. The samples show the specific capacitance of 102 F/g at current density of 200mA/g and good durability.


2021 ◽  
Vol 10 (4) ◽  
pp. 94-101
Author(s):  
Apriwandi Apriwandi ◽  
Erman Taer ◽  
Rakhmawati Farma

Abstrak. Teknologi penyimpan energi elektrokimia yang ramah lingkungan merupakan aspek yang penting dalam menunjang kinerja sistem konversi energi terbarukan. Studi ini menyiapkan elektroda superkapasitor berbahan asal karbon aktif berpori limbah daun pisang kepok. Sampel dipreparasi melalui impregnasi Natrium hidroksida pada konsentrasi 0,5 m/L dan dipirolisis satu tahap meliputi karbonisasi dan aktivasi fisika. Serbuk karbon yang dihasilkan dikonversi dalam bentuk pellet atau monolit dengan menggunakan hidraulik press tanpa adanya penambahan bahan perekat. Proses karbonisasi dilakukan dari suhu kamar hingga 600 °C pada lingkungan gas N2 sedangkan proses aktivasi fisika dilakukan dari suhu 600 °C hingga pada suhu tinggi dengan tiga jenis suhu yang berbeda meliputi 700 °C, 800 °C, dan 900 °C pada lingkungan gas CO2. Analisis densitas ditinjau sebagai evaluasi awal elektroda karbon berpori. Lebih lanjut, sifat elektrokimia superkapasitor dievaluasi melalui dua teknik yang berbeda meliputi teknik cyclic voltammetry (CV) dan galanostatic charge discharge (GCD) pada sistem dua elektroda dalam elektrolit 1 M H2SO4. Kapasitansi spesifik pada teknik CV adalah sebesar 142 F/g sedangkan dengan teknik GCD menghasilkan kapsitansi spesifik sebesar 154 F/g pada resistansi 42∙10-3Ω. Rapat daya dan rapat energi yang dihasilkan berturut-turut 20,45 Wh/kg dan 38,32 W/kg. Hasil ini mengkonfirmasi bahwa daun pisang berpotensi dijadikan sebagai karbon aktif berpori untuk material dasar elektroda superkapasitor.Abstract. Environmentally friendly electrochemical energy storage technology is an important aspect of supporting global energy fulfillment as a contribution to improving the performance of renewable energy conversion systems. Currently, supercapacitors are considered as a superior electrochemical energy storage technology compared to others. This study performed a supercapacitor with electrodes made from porous activated carbon based on biomass waste, especially banana leaf waste. The sample was prepared by sodium hydroxide impregnated at a concentration of 0.5 m/L dan one-step pyrolysis both carbonization dan physical activation. The carbon powder is converted into pellets or monoliths using a hydraulic press without the addition of any adhesive materials. The carbonization process is performed from room temperature to 600 °C in an N2 gas environment while the physical activation process is carried out from a temperature of 600 °C to a high temperature with three different types including 700 °C, 800 °C, dan 800 °C in CO2 gas atmosphere. Density analysis is reviewed as an initial evaluation of the porous carbon electrode. Furthermore, the electrochemical properties of the supercapacitor were evaluated through two different techniques including cyclic voltammetry (CV) dan galvanostatic charge-discharge (GCD) in a two-electrode system in 1 M H2SO4 electrolyte. The specific capacitance in the CV technique is 142 F/g while the GCD technique produces a specific capacitance of 154 F/g at resistance of 42∙10-3 Ω. The power density dan energy densities for the K-900 are 20.45 Wh/kg dan 38.32 W/kg, respectively. These results confirmed that banana leaves have the potential to be used as porous activated carbon for the supercapacitor electrode.


Author(s):  
Dawid Kasprzak ◽  
Maciej Galiński

AbstractThis paper reports on the preparation and electrochemical performance of chitin- and chitin-cellulose-based hydrogel electrolytes. The materials were prepared by a casting solution technique using ionic liquid-based solvents. The method of chitin dissolution in ionic liquid with the assistance of dimethyl sulfoxide co-solvent was investigated. The obtained membranes were soaked with 1-M lithium sulfate aqueous solution. The prepared materials were preliminarily characterized in terms of structural and physicochemical properties. Further, the most promising biopolymer membranes were assembled with activated carbon cloth electrodes in symmetric electrochemical capacitor cells. The electrochemical performances of these devices were studied in a 2-electrode system by commonly known electrochemical techniques, such as cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The devices operated at a maximum voltage of 0.8 V. All the investigated materials have shown high efficiency in terms of specific capacitance, power density, and cyclability. The studied capacitors exhibited specific capacitance values in the range of 92–98 F g−1, with excellent capacitance retention (ca. 97–98%) after 20,000 galvanostatic charge and discharge cycles. Taking into account the above information and the eco-friendly nature of the biopolymer, it appears that the prepared chitin- and chitin-cellulose-based hydrogel electrolytes can be promising components for green electrochemical capacitors.


2017 ◽  
Vol 727 ◽  
pp. 775-780 ◽  
Author(s):  
Yun Long Zhou ◽  
Chen Hao Zhao ◽  
Zhi Biao Hu ◽  
Xue Yan Huang ◽  
Kai Yu Liu ◽  
...  

The Co-Ni mixed oxides/graphene composite has been prepared using the solution based oxidation route. The structures of bare Co-Ni mixed oxides and Co-Ni mixed oxides/graphene composite is clearly studied by X-ray diffraction. The electrochemical properties of Co-Ni mixed oxides/graphene composite are investigated by Cyclic Voltammetry (CV) and galvanostatic charge discharge test. The result shows that, the NiO phase has not been detected in the composite, and the graphene composite delivers a discharge capacity of 353.6 F/g at a current density of 0.32 A g-1.


Sign in / Sign up

Export Citation Format

Share Document