scholarly journals Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling

Author(s):  
Eva F. Leifheit ◽  
Hanna L. Kissener ◽  
Erik Faltin ◽  
Masahiro Ryo ◽  
Matthias C. Rillig

AbstractTire particles (TPs) are a major source of microplastic on land, and considering their chemical composition, they represent a potential hazard for the terrestrial environment. We studied the effects of TPs at environmentally relevant concentrations along a wide concentration gradient (0–160 mg g−1) and tested the effects on plant growth, soil pH and the key ecosystem process of litter decomposition and soil respiration. The addition of TPs negatively affected shoot and root growth already at low concentrations. Tea litter decomposition slightly increased with lower additions of TPs but decreased later on. Soil pH increased until a TP concentration of 80 mg g−1 and leveled off afterwards. Soil respiration clearly increased with increasing concentration of added TPs. Plant growth was likely reduced with starting contamination and stopped when contamination reached a certain level in the soil. The presence of TPs altered a number of biogeochemical soil parameters that can have further effects on plant performance. Considering the quantities of yearly produced TPs, their persistence, and toxic potential, we assume that these particles will eventually have a significant impact on terrestrial ecosystems.

2021 ◽  
Author(s):  
Eva F Leifheit ◽  
Hanna L Kissener ◽  
Erik Faltin ◽  
Masahiro Ryo ◽  
Matthias C Rillig

Tire particles (TPs) are a major source of microplastic on land, and considering their chemical composition, they represent a potential hazard for the terrestrial environment. We studied the effects of TPs at environmentally relevant concentrations along a wide concentration gradient (0 - 160 mg g-1) and tested the effects on plant growth, soil pH and the key ecosystem process of litter decomposition and soil respiration. The addition of TPs negatively affected shoot and root growth already at low concentrations. Tea litter decomposition slightly increased with lower additions of TPs but decreased later on. Soil pH increased until a TP concentration of 80 mg kg-1 and leveled off afterwards. Soil respiration clearly increased with increasing concentration of added TPs. Plant growth was likely reduced with starting contamination and stopped when contamination reached a certain level in the soil. The presence of TPs altered a number of biogeochemical soil parameters that can have further effects on plant performance. Considering the quantities of yearly produced TPs, their persistence, and toxic potential, we assume that these particles will eventually have a significant impact on terrestrial ecosystems.


Toxics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 36 ◽  
Author(s):  
Fayuan Wang ◽  
Xiaoqing Zhang ◽  
Shuqi Zhang ◽  
Shuwu Zhang ◽  
Catharine A. Adams ◽  
...  

Microplastics (MPs) occur widely in terrestrial ecosystems. However, information on the interaction of MPs with metals in terrestrial ecosystems is lacking in the literature. The present study investigated the effects of two types of MPs (high-density polyethylene (HDPE) and polystyrene (PS)) with different dosages (i.e., 0, 0.1%, 1%, and 10%) on the uptake and effects of Cd in maize plants grown in an agricultural soil. Results showed that addition of Cd at a 5 mg/kg caused inhibited plant growth and resulted in high Cd accumulation in plant tissues. Polyethylene alone showed no significant phytotoxic effects, but a high-dose of HDPE (10%) amplified Cd phytotoxicity. Polystyrene negatively affected maize growth and phytoxicity further increased in the presence of Cd. Both HDPE and PS caused soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd concentrations to increase but did not significantly affect Cd uptake into plant tissues. In the soil without Cd addition, HDPE decreased soil pH, while PS did not significantly alter soil pH. However, in the soil spiked with Cd, both HDPE and PS increased pH. Overall, impacts on plant growth and Cd accumulation varied with MP type and dose, and PS induced substantial phytotoxicity. In conclusion, co-occurring MPs can change Cd bioavailability, plant performance, and soil traits. Our findings highlight the ecological impacts that could occur from the release of MPs into soil.


2021 ◽  
Author(s):  
Taiki Mori ◽  
Kenji Ono ◽  
Yoshimi Sakai

AbstractThe Tea Bag Index (TBI) approach is a standardized method for assessing litter decomposition in terrestrial ecosystems. This method allows determination of the stabilized portion of the hydrolysable fraction during the decomposition process, and derivation of a decomposition constant (k) using single measurements of the mass-loss ratios of green and rooibos teas. Although this method is being applied to aquatic systems, it has not been validated in these environments, where initial leaching tends to be higher than in terrestrial ecosystems. Here, we first validated a critical assumption of the TBI method that green tea decomposition plateaus during the standard incubation period of 90 days, and then tested the accuracy of a TBI-based asymptote model using a second model obtained from fitting actual decomposition data. Validation data were obtained by incubating tea bags in water samples taken from a stream, a pond, and the ocean in Kumamoto, Japan. We found that green tea decomposition did not plateau during the 90-day period, contradicting a key assumption of the TBI method. Moreover, the TBI-based asymptote models disagreed with actual decomposition data. Subtracting the leachable fraction from the initial tea mass improved the TBI-based model, but discrepancies with the actual decomposition data remained. Thus, we conclude that the TBI approach, which was developed for a terrestrial environment, is not appropriate for aquatic ecosystems. However, the use of tea bags as a standard material in assessments of aquatic litter decomposition remains beneficial.


PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001130 ◽  
Author(s):  
Matthias C. Rillig ◽  
Eva Leifheit ◽  
Johannes Lehmann

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Gabriela Laura Almajan ◽  
Stefania Felicia Barbuceanu ◽  
Ioana Saramet ◽  
Mihaela Dinu ◽  
Cristian Vasile Doicin ◽  
...  

5-[4-(4X-phenylsulfonyl)phenyl]-1,3,4-oxadiazole-2-thiols, X=H, Cl, Br, reacted with ethyl chloroacetate to give S-alkylated compounds. Aminomethylation of the thione form of oxadiazoles yielded N(3)-derivatives. All the products have been characterized by elemental analysis, IR, 1H-NMR and 13C-NMR. The plant-growth regulating effects of the title compounds were examined. From the biological activity results, we found that most compounds showed weak stimulatory activities at low concentrations.


2021 ◽  
Vol 185 ◽  
pp. 104424
Author(s):  
Jesper Liengaard Johansen ◽  
Maiken Lundstad Nielsen ◽  
Mette Vestergård ◽  
Louise Hindborg Mortensen ◽  
Carla Cruz-Paredes ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sai Guo ◽  
Wu Xiong ◽  
Xinnan Hang ◽  
Zhilei Gao ◽  
Zixuan Jiao ◽  
...  

Abstract Background Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. Results Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. Conclusions We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wumei Xu ◽  
Fengyun Wu ◽  
Haoji Wang ◽  
Linyan Zhao ◽  
Xue Liu ◽  
...  

AbstractNegative plant-soil feedbacks lead to the poor growth of Panax notoginseng (Sanqi), a well-known herb in Asia and has been used worldwide, under continuous cropping. However, the key soil parameters causing the replant problem are still unclear. Here we conducted a field experiment after 5-year continuous cropping. Sanqi seedlings were cultivated in 7 plots (1.5 m × 2 m), which were randomly assigned along a survival gradient. In total, 13 important soil parameters were measured to understand their relationship with Sanqi’s survival. Pearson correlation analysis showed that 6 soil parameters, including phosphatase, urease, cellulase, bacteria/fungi ratio, available N, and pH, were all correlated with Sanqi’s survival rate (P < 0.05). Principal component analysis (PCA) indicated that they explained 61% of the variances based on the first component, with soil pH being closely correlated with other parameters affecting Sanqi’s survival. The optimum pH for Sanqi growth is about 6.5, but the mean soil pH in the study area is 5.27 (4.86–5.68), therefore it is possible to ameliorate the poor growth of Sanqi by increasing soil pH. This study may also help to reduce the replant problem of other crops under continuous cropping since it is widespread in agricultural production.


2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

&lt;p&gt;Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.&lt;/p&gt;&lt;p&gt;In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (&amp;#948;&lt;sup&gt;13&lt;/sup&gt;C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C variation. By combining innovative multi-proxy geochemical analysis (&amp;#948;&lt;sup&gt;13&lt;/sup&gt;C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C signal to derive changes in respired &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q&lt;sub&gt;10&lt;/sub&gt;), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.&lt;/p&gt;&lt;p&gt;These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document