scholarly journals An update on the distribution of the coypu, Myocastor coypus, in Asia and Africa through published literature, citizen-science and online platforms

2022 ◽  
Author(s):  
Luca Pedruzzi ◽  
Anna Schertler ◽  
Silvia Giuntini ◽  
Ivan Leggiero ◽  
Emiliano Mori

AbstractThe coypu, Myocastor coypus, has been introduced worldwide for fur farming and is widely recognized as one of the most invasive alien mammals of the world, affecting natural ecosystems, crops and possibly human health. Here we present a comprehensive up-to-date review of its distribution and status in Asia and Africa. Using a multi-source approach, we collected occurrences from published literature as well as from online biodiversity platforms (e.g. GBIF, iNaturalist), video sharing platforms, and local experts. Additionally, we used an ensemble modelling approach to predict the climatic suitability across Africa and Asia. We present an updated distribution map, including a total of 1506 spatially explicit records from 1973 to 2021, covering 1 African and 16 Asian countries. We find evidence for current populations in Kenya and five new countries since the last review of (Carter and Leonard, Wildl Soc Bull 30:162–175, 2002): Iran, Jordan, Lebanon, Uzbekistan, and Vietnam, and identify main clusters of coypu occurrence in Western (including Transcaucasia) and East Asia. We show that warm temperate and Mediterranean areas on both continents are predicted to be climatically suitable for the coypu and highlight not only areas of possible spread, but also potential data gaps, i.e. with high suitability and low availability of concrete information (e.g. China, Southern Russia). We emphasize the importance of citizen involvement and the urgency for coypu-targeted studies in data-poor regions to obtain a clear picture of the geographical distribution and to better address management strategies.

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 598
Author(s):  
Do-Hun Lee ◽  
Nam Jung ◽  
Yong-Hyeok Jang ◽  
KyoungEun Lee ◽  
Joobaek Lim ◽  
...  

Nutrias (Myocastor coypus) were imported to South Korea for farming in 1985; individuals escaped captivity and established wild populations in natural ecosystems in the late 1990s. Numerous studies have focused on their monitoring and management; however, information on the continuous movement of individuals is not available. In this study, telemetry data from field conditions were used to identify the nearest-neighbor distances of individuals in association with environmental factors, including plant type, land cover, and biological parameters. The minimum nearest-neighbor distances for the different sexes were, overall, according to the minimum distances for the same sex. Local co-occurrences of individuals, either of the same or different sex, were seasonal. Tall grasslands, followed by herbaceous vegetation, were associated with the co-occurrence of different sexes. Conversely, floating-leaved hydrophytes, followed by xeric herbaceous vegetation, were correlated with the co-occurrence of the same sex. Local female–male co-occurrences were negatively associated with male–male co-occurrences but not with female–female co-occurrences, suggesting male dominance in group formations. Movement and co-occurrence information extracted using Geo-self-organizing maps furthers our understanding of population dispersal and helps formulate management strategies for nutria populations.


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 724
Author(s):  
Noack ◽  
Heyns ◽  
Rodenwoldt ◽  
Edwards

The establishment of enclosed conservation areas are claimed to be the driving force for the long-term survival of wildlife populations. Whilst fencing provides an important tool in conservation, it simultaneously represents a controversial matter as it stops natural migration processes, which could ultimately lead to inbreeding, a decline in genetic diversity and local extinction if not managed correctly. Thus, wildlife residing in enclosed reserves requires effective conservation and management strategies, which are strongly reliant on robust population estimates. Here, we used camera traps combined with the relatively new class of spatially explicit capture-recaptured models (SECR) to produce the first reliable leopard population estimate for an enclosed reserve in Namibia. Leopard density was estimated at 14.51 leopards/100 km2, the highest recorded density in Namibia to date. A combination of high prey abundance, the absence of human persecution and a lack of top-down control are believed to be the main drivers of the recorded high leopard population. Our results add to the growing body of literature which suggests enclosed reserves have the potential to harbour high densities and highlight the importance of such reserves for the survival of threatened species in the future.


2010 ◽  
Vol 48 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Max Post van der Burg ◽  
Bartholomew Bly ◽  
Tammy VerCauteren ◽  
Andrew J. Tyre

2012 ◽  
Vol 26 (4) ◽  
pp. 735-747 ◽  
Author(s):  
Mariana Reis de Brito ◽  
Luci de Senna-Valle

The number of publications about the Caiçaras population is growing, which shows that researchers are interested in these natives. This study aimed to survey the flora used by local specialists of the Praia do Sono Caiçara community, and recorded how these taxa were used, with the goal of understanding traditional management systems that help to conserve natural ecosystems. Twelve informants were selected and interviewed. The applied grouping analysis, together with the chi-squared test, underlined that the analysed ethnobotanical knowledge showed a heterogeneous distribution in relation to the gender of the interviewee. A total of 190 taxa were cited and were classified into nine usage categories. The Shannon-Wiener index (H') value obtained in this study was the second highest in comparison to other Brazilian coastal communities. This work showed that the local specialists of this Caiçara community maintain a wide knowledge of, and affinity to, the plant resources that surround them. This knowledge is not only important, but fundamental to discussions about the application of sustainable use and management strategies for this area of conservation value.


2021 ◽  
pp. 545-570
Author(s):  
Marcos Giongo ◽  
Micael Moreira Santos ◽  
Damiana Beatriz da Silva ◽  
Jader Nunes Cachoeira ◽  
Giovanni Santopuoli

AbstractBrazil is the second largest forested country in the world with a high level of naturalness and biodiversity richness, playing a significant role in the adoption of mitigation and adaptation strategies to climate change. Although the Brazilian federal government is mainly responsible for the protection of natural ecosystems, the decentralization process, which demands competences of the states and municipalities, allowed the establishment of several agencies and institutions dealing with monitoring, assessment, and management of forest ecosystems through a complex and interrelated number of forest policies. Nevertheless, the deforestation rate, with a consequent loss of biodiversity and ecosystem services, represents critical challenges, attracting worldwide attention. The variety of mitigation and adaptation measures adopted over the years represents viable tools to face climate change and to promote climate-smart forestry in Brazil. Notwithstanding the positive effects achieved in the last decade, a better coordination and practical implementation of climate-smart forestry strategies is required to reach nationally and internationally agreed objectives.This chapter aims to depict the Brazilian forestry sector, highlighting the management strategies adopted overtime to counteract climate change.


2013 ◽  
Vol 70 (4) ◽  
pp. 768-781 ◽  
Author(s):  
Paul Marchal ◽  
Youen Vermard

Abstract Marchal, P., and Vermard, Y. 2013. Evaluating deepwater fisheries management strategies using a mixed-fisheries and spatially explicit modelling framework. – ICES Journal of Marine Science, 70: 768–781. We have used in this study a spatially explicit bioeconomic modelling framework to evaluate management strategies, building in both data-rich and data-limited harvest control rules (HCRs), for a mix of deepwater fleets and species, on which information is variable. The main focus was on blue ling (Molva dypterygia). For that species, both data-rich and data-limited HCRs were tested, while catch per unit effort (CPUE) was used either to tune stock assessments, or to directly trigger management action. There were only limited differences between the performances of both HCRs when blue ling biomass was initialized at the current level, but blue ling recovered more quickly with the data-rich HCR when its initial biomass was severely depleted. Both types of HCR lead, on average, to a long-term recovery of both blue ling and saithe (Pollachius virens) stocks, and some increase in overall profit. However, that improvement is not sufficient to guarantee sustainable exploitation with a high probability. Blue ling CPUE did not always adequately reflect trends in biomass, which mainly resulted from fleet dynamics, possibly in combination with density-dependence. The stock dynamics of roundnose grenadier (Coryphaenoides rupestris), black scabbardfish (Aphanopus carbo) and deepwater sharks (Centrophorus squamosus and Centroscymnus coelolepis) were little affected by the type of HCR chosen to manage blue ling.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1103
Author(s):  
João A. N. Filipe ◽  
Richard C. Cobb ◽  
Maëlle Salmon ◽  
Christopher A. Gilligan

We use a new modelling approach to predict the cumulative impact of Phytophthora ramorum on the dynamic distribution of tanoak (Notholithocarpus densiflorus) and other tree species in coastal-Californian forest-communities. We explore the effectiveness of disease-management strategies for the conservation of tanoak at stand level. Forest resources are increasingly threatened by emerging pathogens such as P. ramorum, a generalist that kills hosts and has altered ecosystems in the USA and Europe. In coastal California, P. ramorum has the greatest impact on tanoak through leaf sporulation and lethal bole infections, but also sporulates on the common overstory-tree bay laurel (Umbellularia californica) without significant health impact. Such epidemiological differences impede host-species coexistence and challenge pathogen management. For most disease-impacted natural systems, however, empirical evidence is still insufficient to identify effective and affordable pathogen-control measures for retaining at-risk host populations. Yet, landscape-scale tree mortality requires swift actions to mitigate ecological impacts and loss of biodiversity. We apply a mathematical model of the feedback between disease and forest-community dynamics to assess the impacts of P. ramorum invasion on tanoak under stand-scale disease-management strategies by landowners aiming to retain tanoak and slow disease progression: (1) removal of inoculum through reduction of bay laurel abundance; (2) prevention of tanoak infection through chemical protection (acting epidemiologically like a vaccine); and (3) a combination strategy. The model results indicate that: (1) both bay laurel removal and tanoak protection are required to help maintain tanoak populations; (2) treatment effectiveness depends on forest composition and on threshold criteria; (3) sustainable tanoak conservation would require long-term follow-up of preventive treatments; (4) arresting basal sprouting upon tree removal may help to reduce inoculum. These findings suggest potential treatments for specific forest conditions that could be tested and implemented to reduce P. ramorum inoculum and disease and to conserve tanoak at stand level.


2020 ◽  
Author(s):  
Anna Conchon ◽  
Olivier Titaud ◽  
Inna Senina ◽  
Beatriz Calmettes ◽  
Audrey Delpech ◽  
...  

<p><span xml:lang="EN-US" data-contrast="none"><span>SEAPODYM-LMTL is the Lower (zooplankton) and Mid (micronekton) Trophic levels model of the Spatial Ecosystem </span></span><span xml:lang="EN-US" data-contrast="none"><span>And</span></span><span xml:lang="EN-US" data-contrast="none"><span> </span></span><span xml:lang="EN-US" data-contrast="none"><span>POpulation</span></span><span xml:lang="EN-US" data-contrast="none"><span> </span></span><span xml:lang="EN-US" data-contrast="none"><span>DYnamic</span></span><span xml:lang="EN-US" data-contrast="none"><span> Modeling framework. Currently, there is one zooplankton and 6 micronekton functional groups defined according to their vertical behavior and development times. The model is global and spatially explicit with transport described through a system of advection-diffusion equations. The vertical dimension is simplified into three layers -- epipelagic, upper and lower mesopelagic -- defined relatively to the euphotic depth. There are three vertically migrant and three non-migrant functional groups. The model is parsimonious with only a few parameters (6 for the zooplankton and 11 for the micronekton) that control the energy transfer efficiency from the primary production and the mortality and time of development that are linked to the water temperature. A data assimilation framework has been implemented to estimate those parameters.  We present briefly the latest results and future challenges of this model. They include the validation of vertical layer boundaries, the first zooplankton and micronekton parameters estimation using existing biomass observations, and the developments needed to use large global datasets of acoustic data.</span></span><span> </span></p>


Sign in / Sign up

Export Citation Format

Share Document