scholarly journals bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis

aBIOTECH ◽  
2021 ◽  
Author(s):  
Juan Gao ◽  
Mei-Jing Wang ◽  
Jing-Jing Wang ◽  
Hai-Ping Lu ◽  
Jian-Xiang Liu

AbstractHigh temperature elicits a well-conserved response called the unfolded protein response (UPR) to bring protein homeostasis in the endoplasmic reticulum (ER). Two key UPR regulators bZIP28 and bZIP60 have been shown to be essential for maintaining fertility under heat stress conditions in Arabidopsis, however, the function of transcriptional activator bZIP17, a paralog of bZIP28, in heat stress response at reproductive stage is not reported. Here we found that bzip17 mutant plants were sensitive to heat stress in terms of silique length and fertility comparing to that of wildtype (WT) Arabidopsis plants, and transcriptomic analysis showed that 1380 genes were specifically up-regulated and 493 genes were specifically down-regulated by heat stress in the flowers of WT plants comparing to that in bzip17 mutant plants. These bZIP17-dependent up-regulated genes were enriched in responses to abiotic stresses such as water deprivation and salt stress. Further chromatin immuno-precipitation coupled with high-throughput sequencing (ChIP-Seq) uncovered 1645 genes that were direct targets of bZIP17 in MYC-bZIP17 expressing seedlings subjected to heat stress. Among these 1645 genes, ERSE-II cis-element was enriched in the binding peaks of their promoters, and the up-regulation of 113 genes by heat stress in flowers was dependent on bZIP17. Our results revealed direct targets of bZIP17 in flowers during heat stress responses and demonstrated the important role of bZIP17 in maintaining fertility upon heat stress in plants.

2017 ◽  
Vol 29 (5) ◽  
pp. 1007-1023 ◽  
Author(s):  
Shuang-Shuang Zhang ◽  
Hongxing Yang ◽  
Lan Ding ◽  
Ze-Ting Song ◽  
Hong Ma ◽  
...  

2018 ◽  
Vol 115 (22) ◽  
pp. E5203-E5212 ◽  
Author(s):  
Ya-Shiuan Lai ◽  
Luciana Renna ◽  
John Yarema ◽  
Cristina Ruberti ◽  
Sheng Yang He ◽  
...  

The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.


2020 ◽  
Vol 32 (11) ◽  
pp. 3559-3575 ◽  
Author(s):  
Zhaoxia Li ◽  
Jie Tang ◽  
Renu Srivastava ◽  
Diane C. Bassham ◽  
Stephen H. Howell

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Soledad Matus ◽  
Vicente Valenzuela ◽  
Danilo B. Medinas ◽  
Claudio Hetz

Amyotrophic lateral sclerosis (ALS) is the most frequent paralytic disease in adults. Most ALS cases are considered sporadic with no clear genetic component. The disruption of protein homeostasis due to chronic stress responses at the endoplasmic reticulum (ER) and the accumulation of abnormal protein inclusions are extensively described in ALS mouse models and patient-derived tissue. Recent studies using pharmacological and genetic manipulation of the unfolded protein response (UPR), an adaptive reaction against ER stress, have demonstrated a complex involvement of the pathway in experimental models of ALS. In addition, quantitative changes in ER stress-responsive chaperones in body fluids have been proposed as possible biomarkers to monitor the disease progression. Here we review most recent advances attributing a causal role of ER stress in ALS.


2021 ◽  
Vol 22 (5) ◽  
pp. 2567
Author(s):  
Yann S. Gallot ◽  
Kyle R. Bohnert

Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.


Author(s):  
Ana Sayuri Yamagata ◽  
Paula Paccielli Freire

Cancer cachexia is associated with deficient response to chemotherapy. On the other hand, the tumors of cachectic patients remarkably express more chemokines and have higher immune infiltration. For immunogenicity, a strong induction of the unfolded protein response (UPR) is necessary. UPR followed by cell surface exposure of calreticulin on the dying tumor cell is essential for its engulfment by macrophages and dendritic cells. However, some tumor cells upon endoplasmic reticulum (ER) stress can release factors that induce ER stress to other cells, in the so-called transmissible ER stress (TERS). The cells that received TERS produce more interleukin 6 (IL-6) and chemokines and acquire resistance to subsequent ER stress, nutrient deprivation, and genotoxic stress. Since ER stress enhances the release of extracellular vesicles (EVs), we suggest they can mediate TERS. It was found that ER stressed cachexia-inducing tumor cells transmit factors that trigger ER stress in other cells. Therefore, considering the role of EVs in cancer cachexia, the release of exosomes can possibly play a role in the process of blunting the immunogenicity of the cachexia-associated tumors. We propose that TERS can cause an inflammatory and immunosuppressive phenotype in cachexia-inducing tumors.


1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Oksana Tehlivets

Homocysteine (Hcy) has been recognized for the past five decades as a risk factor for atherosclerosis. However, the role of Hcy in the pathological changes associated with atherosclerosis as well as the pathological mechanisms triggered by Hcy accumulation is poorly understood. Due to the reversal of the physiological direction of the reaction catalyzed byS-adenosyl-L-homocysteine hydrolase Hcy accumulation leads to the synthesis ofS-adenosyl-L-homocysteine (AdoHcy). AdoHcy is a strong product inhibitor ofS-adenosyl-L-methionine (AdoMet)-dependent methyltransferases, and to date more than 50 AdoMet-dependent methyltransferases that methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids have been identified. Phospholipid methylation is the major consumer of AdoMet, both in mammals and in yeast. AdoHcy accumulation induced either by Hcy supplementation or due toS-adenosyl-L-homocysteine hydrolase deficiency results in inhibition of phospholipid methylation in yeast. Moreover, yeast cells accumulating AdoHcy also massively accumulate triacylglycerols (TAG). Similarly, Hcy supplementation was shown to lead to increased TAG and sterol synthesis as well as to the induction of the unfolded protein response (UPR) in mammalian cells. In this review a model of deregulation of lipid metabolism in response to accumulation of AdoHcy in Hcy-associated pathology is proposed.


Sign in / Sign up

Export Citation Format

Share Document