scholarly journals Downregulation of cAMP-Dependent Protein Kinase Inhibitor-b Promotes Preeclampsia by Decreasing Phosphorylated Akt

2020 ◽  
Vol 28 (1) ◽  
pp. 178-185
Author(s):  
Chunfeng Liu ◽  
Hao Wang ◽  
Mo Yang ◽  
Yiheng Liang ◽  
Li Jiang ◽  
...  

AbstractPreeclampsia is a multi-system disease that is unique to human pregnancy. Impaired extravillous trophoblast migration and invasion accompanied by poor spiral vascular remodeling is thought to be the initial reason. This study investigated cAMP-dependent protein kinase inhibitor-b(PKIB) expression in placentas and its involvement in the pathogenesis of PE. We used immunohistochemistry and western blotting to calculate PKIB levels in the placentas. Then we knocked down PKIB by siRNA and used real-time cell analysis to assess the invasion and migration ability of trophoblasts. Tube formation assay and spheroid sprouting assay were utilized to identify the ability to form vessels of trophoblasts. At last, western blotting was used to demonstrate the level of phosphorylated Akt, as well as downstream-related genes of Akt signaling pathway in trophoblasts. We first found that PKIB expression level was lower in the PE placentas than in the normal placentas. In addition, we found that downregulation of PKIB can inhibit the migration, invasion, and the ability to form vessels of HTR8/SVneo cells. Downregulation of PKIB leaded to a decrease in phosphorylated Akt, as well as downstream proteins such as matrix metalloproteinase 2, matrix metalloproteinase 9, and glycogen synthase kinase 3β, which are related to migration and invasion. Our study revealed that the downregulation of PKIB expression resulted in decreased migration, invasion, and vessel formation ability by regulating Akt signaling pathway in placental trophoblasts in PE.

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Wei Zhang ◽  
Feng Liang ◽  
Qingfeng Li ◽  
Hong Sun ◽  
Fei Li ◽  
...  

Abstract Background Hepatoblastoma (HB) is identified to be the most common liver malignancy which occurs in children. Long non-coding RNAs (lncRNAs) have been implicated in numerous biological processes and diseases, including HB. LncRNA MIR205 host gene (MIR205HG) has been investigated in multiple cancers, however, its role in HB remains to be elucidated. Methods MIR205HG expression was analyzed by RT-qPCR. EdU, colony formation and transwell assays were implemented to measure the biological function of MIR205HG on the progression of HB. Mechanism assays were carried out to probe into the underlying mechanism of MIR205HG in HB cells. Results MIR205HG was significantly overexpressed in HB. Moreover, MIR205HG inhibition suppressed the proliferative, migratory and invasive capacities of HB cells. Furthermore, MIR205HG competitively bound to microRNA-514a-5p (miR-514a-5p) and targeted mitogen-activated protein kinase 9 (MAPK9) to stimulate mitogen activated protein kinase (MAPK) signaling pathway. Besides, MIR205HG also served as a sponge for microRNA-205-5p (miR-205-5p) to activate the PI3K/AKT signaling pathway. Conclusion MIR205HG drives the progression of HB which might provide an efficient marker and new therapeutic target for HB.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 591-600
Author(s):  
Kiminori Shimizu ◽  
Nancy P Keller

Abstract In the filamentous fungus Aspergillus nidulans, a heterotrimeric G protein α-subunit and an RGS domain protein, encoded by fadA and flbA, respectively, regulate production of the carcinogenic metabolite sterigmatocystin (ST) and asexual spores (i.e., conidia). We investigated the genetic involvement of the cAMP-dependent protein kinase catalytic subunit (PkaA), a potential downstream target of FadA activity, in ST production and conidiation. Relative to wild type, sporulation was decreased in the pkaA overexpression strain but was not totally absent, as occurs in ΔflbA or fadAG42R (fadA-dominant active) strains. Deletion of pkaA resulted in a hyper-conidiating strain with limited radial growth. This phenotype was epistatic to mutation in flbA or fadA; the double mutants ΔpkaA; ΔflbA and ΔpkaA; fadAG42R recovered sporulation and their radial growth was severely restricted. PkaA overexpression also negatively regulated AflR, the ST biosynthesis-specific transcription factor, both transcriptionally and post-transcriptionally. Deletion of pkaA restored ST production in the ΔflbA background but not in the fadAG42R background. These data provide genetic evidence that the FlbA/FadA signaling pathway regulating ST production and morphological development is partially mediated through PkaA.


1989 ◽  
Vol 94 (4) ◽  
pp. 693-717 ◽  
Author(s):  
B Ribalet ◽  
S Ciani ◽  
G T Eddlestone

The single-channel recording technique was employed to investigate the mechanism conferring ATP sensitivity to a metabolite-sensitive K channel in insulin-secreting cells. ATP stimulated channel activity in the 0-10 microM range, but depressed it at higher concentrations. In inside-out patches, addition of the cAMP-dependent protein kinase inhibitor (PKI) reduced channel activity, suggesting that the stimulatory effect of ATP occurs via cAMP-dependent protein kinase-mediated phosphorylation. Raising ATP between 10 and 500 microM in the presence of exogenous PKI progressively reduced the channel activity; it is proposed that this inactivation results from a reduction in kinase activity owing to an ATP-dependent binding of PKI or a protein with similar inhibitory properties to the kinase. A model describing the effects of ATP was developed, incorporating these two separate roles for the nucleotide. Assuming that the efficacy of ATP in controlling the channel activity depends upon the relative concentrations of inhibitor and catalytic subunit associated with the membrane, our model predicts that the channel sensitivity to ATP will vary when the ratio of these two modulators is altered. Based upon this, it is shown that the apparent discrepancy existing between the sensitivity of the channel to low ATP concentrations in the excised patch and the elevated intracellular level of ATP may be explained by postulating a change in the inhibitor/kinase ratio from 1:1 to 3:2 owing to the loss of protein kinase after patch excision. At a low concentration of ATP (10-20 microM), a nonhydrolyzable ATP analogue, AMP-PNP, enhanced the channel activity when present below 10 microM, whereas the analogue blocked the channel activity at higher concentrations. It is postulated that AMP-PNP inhibits the formation of the kinase-inhibitor complex in the former case, and prevents phosphate transfer in the latter. A similar mechanism would explain the interaction between ATP and ADP which is characterized by enhanced activity at low ADP concentrations and blocking at higher concentrations.


2015 ◽  
Vol 12 (4) ◽  
pp. 5086-5092 ◽  
Author(s):  
WEIMIN NI ◽  
YAN FANG ◽  
LEI TONG ◽  
ZHAOXUE TONG ◽  
FUXIN YI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document