Microscopy of Eugenia involucrata, Chemical Composition and Biological Activities of the Volatile Oil

Author(s):  
Wagner D’Almeida ◽  
Luciane Mendes Monteiro ◽  
Vijayasankar Raman ◽  
Junaid Ur Rehman ◽  
Katia Sabrina Paludo ◽  
...  
2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


Author(s):  
Mohd Faisal Khan ◽  
Poonam Arora ◽  
Mahaveer Dhobi

Background: Vitex negundo Linn. commonly known as five leave chase tree is an ethnobotanically important drug in traditional system of medicine. The plant is widely distributed in India, China and other Asian and American countries. Objective: The review aims at presenting comprehensive information with respect to ethnopharmacological rele-vance and recent findings on phytochemical and biological activities of Vitex negundo. Method: Literature was collected from various sources such as pubmed, scopus, science direct, and others. Results: Extracts and secondary metabolites of this plant, particularly those from roots and leaves, possess useful pharmacological activities such as anti-inflammatory, antitumor, antioxidant, antimicrobial, galactagogue, antigas-tric, antiflatulant, antiparasitic, analgesic, hepatoprotective and antihypertensive, some of which have been vali-dated scientifically. All parts of plant especially leave and roots contain a large number of bioactive phytoconstitu-ents including flavonoids, iridoids, lignans, volatile oil, terpenes, coumarins, phenolic and steroidal compounds which impart it multiple medicinal properties. Vitexin, isovitexin, viridifol, caffeic acid, chlorogenic acid and iso-chlorogenic acid are the main components. Conclusion: The review emphasises the medicinal importance of Vitex negundo and its bioactive constituents in traditional system of medicine.


2021 ◽  
Vol 141 ◽  
pp. 306-312
Author(s):  
Burcu Sen-Utsukarci ◽  
Sonja M. Kessler ◽  
Ozlem Akbal-Dagistan ◽  
Alden S. Estep ◽  
Nurhayat Tabanca ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2888
Author(s):  
Carmen M. S. Ambrosio ◽  
Gloria L. Diaz-Arenas ◽  
Leidy P. A. Agudelo ◽  
Elena Stashenko ◽  
Carmen J. Contreras-Castillo ◽  
...  

Essential oils (EOs) from Citrus are the main by-product of Citrus-processing industries. In addition to food/beverage and cosmetic applications, citrus EOs could also potentially be used as an alternative to antibiotics in food-producing animals. A commercial citrus EO—Brazilian Orange Terpenes (BOT)—was fractionated by vacuum fractional distillation to separate BOT into various fractions: F1, F2, F3, and F4. Next, the chemical composition and biological activities of BOT and its fractions were characterized. Results showed the three first fractions had a high relative amount of limonene (≥10.86), even higher than the whole BOT. Conversely, F4 presented a larger relative amount of BOT’s minor compounds (carvone, cis-carveol, trans-carveol, cis-p-Mentha-2,8-dien-1-ol, and trans-p-Mentha-2,8-dien-1-ol) and a very low relative amount of limonene (0.08–0.13). Antibacterial activity results showed F4 was the only fraction exhibiting this activity, which was selective and higher activity on a pathogenic bacterium (E. coli) than on a beneficial bacterium (Lactobacillus sp.). However, F4 activity was lower than BOT. Similarly, F4 displayed the highest antioxidant activity among fractions (equivalent to BOT). These results indicated that probably those minor compounds that detected in F4 would be more involved in conferring the biological activities for this fraction and consequently for the whole BOT, instead of the major compound, limonene, playing this role exclusively.


2008 ◽  
Vol 20 (4) ◽  
pp. 366-368 ◽  
Author(s):  
Euclésio Simionatto ◽  
Vinicius Ilha ◽  
Anderson S. Mallmann ◽  
Carla Porto ◽  
Ionara I. Dalcol ◽  
...  

Planta Medica ◽  
2009 ◽  
Vol 75 (04) ◽  
Author(s):  
DE Wedge ◽  
Z Gao ◽  
N Tabanca ◽  
B Demirci ◽  
KHC Baser ◽  
...  

Medicines ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 10 ◽  
Author(s):  
Mohamed Al-Fatimi ◽  
Martina Wurster ◽  
Ulrike Lindequist

2002 ◽  
Vol 57 (11-12) ◽  
pp. 990-993 ◽  
Author(s):  
Guddadarangavvanahally K. Jayaprakasha ◽  
Lingamallu Jaganmohan Rao ◽  
Kunnumpurath K. Sakariah

The hydro-distilled volatile oil of the Cinnamomum zeylanicum (C. zeylanicum) buds was analyzed using GC and GC-MS for the first time. Thirty-four compounds representing ≈ 98% of the oil was characterized. It consists of terpene hydrocarbons (78%) and oxygenated terpenoids (9%). α-Bergamotene (27.38%) and α-copaene (23.05%) are found to be the major compounds. A comparison of the chemical composition of the oil was made with that of flowers and fruits.


Sign in / Sign up

Export Citation Format

Share Document