scholarly journals Hybrid high-order semantic graph representation learning for recommendations

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Canta Zheng ◽  
Wenming Cao

AbstractThe amount of Internet data is increasing day by day with the rapid development of information technology. To process massive amounts of data and solve information overload, researchers proposed recommender systems. Traditional recommendation methods are mainly based on collaborative filtering algorithms, which have data sparsity problems. At present, most model-based collaborative filtering recommendation algorithms can only capture first-order semantic information and cannot process high-order semantic information. To solve the above issues, in this paper, we propose a hybrid graph neural network model based on heterogeneous graphs with high-order semantic information extraction, which models users and items respectively by learning low-dimensional representations for them. We introduced an attention mechanism to allow the model to understand the corresponding edge weights adaptively. Simultaneously, the model also integrates social information in the data to learn more abundant information. We performed some experiments on related datasets. Our method achieved better results than some current advanced models, which verified the proposed model’s effectiveness.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ruihui Mu ◽  
Xiaoqin Zeng

To solve the problem that collaborative filtering algorithm only uses the user-item rating matrix and does not consider semantic information, we proposed a novel collaborative filtering recommendation algorithm based on knowledge graph. Using the knowledge graph representation learning method, this method embeds the existing semantic data into a low-dimensional vector space. It integrates the semantic information of items into the collaborative filtering recommendation by calculating the semantic similarity between items. The shortcoming of collaborative filtering algorithm which does not consider the semantic information of items is overcome, and therefore the effect of collaborative filtering recommendation is improved on the semantic level. Experimental results show that the proposed algorithm can get higher values on precision, recall, and F-measure for collaborative filtering recommendation.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 392 ◽  
Author(s):  
Zhiying Cao ◽  
Xinghao Qiao ◽  
Shuo Jiang ◽  
Xiuguo Zhang

Using semantic information can help to accurately find suitable services from a variety of available (different semantics) services, and the semantic information of Web services can be described in detail in a Web service knowledge graph. In this paper, a Web service recommendation algorithm based on knowledge graph representation learning (kg-WSR) is proposed. The algorithm embeds the entities and relationships of the knowledge graph into the low-dimensional vector space. By calculating the distance between service entities in low-dimensional space, the relationship information of services which is not considered in recommendation approaches using a collaborative filtering algorithm is incorporated into the recommendation algorithm to enhance the accurateness of the result. The experimental results show that this algorithm can not only effectively improve the accuracy rate, recall rate, and coverage rate of recommendation but also solve the cold start problem to some extent.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gongwen Xu ◽  
Guangyu Jia ◽  
Lin Shi ◽  
Zhijun Zhang

Personalized courses recommendation technology is one of the hotspots in online education field. A good recommendation algorithm can stimulate learners’ enthusiasm and give full play to different learners’ learning personality. At present, the popular collaborative filtering algorithm ignores the semantic relationship between recommendation items, resulting in unsatisfactory recommendation results. In this paper, an algorithm combining knowledge graph and collaborative filtering is proposed. Firstly, the knowledge graph representation learning method is used to embed the semantic information of the items into a low-dimensional semantic space; then, the semantic similarity between the recommended items is calculated, and then, this item semantic information is fused into the collaborative filtering recommendation algorithm. This algorithm increases the performance of recommendation at the semantic level. The results show that the proposed algorithm can effectively recommend courses for learners and has higher values on precision, recall, and F1 than the traditional recommendation algorithm.


Author(s):  
Fenxiao Chen ◽  
Yun-Cheng Wang ◽  
Bin Wang ◽  
C.-C. Jay Kuo

Abstract Research on graph representation learning has received great attention in recent years since most data in real-world applications come in the form of graphs. High-dimensional graph data are often in irregular forms. They are more difficult to analyze than image/video/audio data defined on regular lattices. Various graph embedding techniques have been developed to convert the raw graph data into a low-dimensional vector representation while preserving the intrinsic graph properties. In this review, we first explain the graph embedding task and its challenges. Next, we review a wide range of graph embedding techniques with insights. Then, we evaluate several stat-of-the-art methods against small and large data sets and compare their performance. Finally, potential applications and future directions are presented.


2020 ◽  
Vol 34 (04) ◽  
pp. 4132-4139
Author(s):  
Huiting Hong ◽  
Hantao Guo ◽  
Yucheng Lin ◽  
Xiaoqing Yang ◽  
Zang Li ◽  
...  

In this paper, we focus on graph representation learning of heterogeneous information network (HIN), in which various types of vertices are connected by various types of relations. Most of the existing methods conducted on HIN revise homogeneous graph embedding models via meta-paths to learn low-dimensional vector space of HIN. In this paper, we propose a novel Heterogeneous Graph Structural Attention Neural Network (HetSANN) to directly encode structural information of HIN without meta-path and achieve more informative representations. With this method, domain experts will not be needed to design meta-path schemes and the heterogeneous information can be processed automatically by our proposed model. Specifically, we implicitly represent heterogeneous information using the following two methods: 1) we model the transformation between heterogeneous vertices through a projection in low-dimensional entity spaces; 2) afterwards, we apply the graph neural network to aggregate multi-relational information of projected neighborhood by means of attention mechanism. We also present three extensions of HetSANN, i.e., voices-sharing product attention for the pairwise relationships in HIN, cycle-consistency loss to retain the transformation between heterogeneous entity spaces, and multi-task learning with full use of information. The experiments conducted on three public datasets demonstrate that our proposed models achieve significant and consistent improvements compared to state-of-the-art solutions.


Author(s):  
Dalia Sulieman ◽  
Maria Malek ◽  
Hubert Kadima ◽  
Dominique Laurent

In this article, the authors consider the basic problem of recommender systems that is identifying a set of users to whom a given item is to be recommended. In practice recommender systems are run against huge sets of users, and the problem is then to avoid scanning the whole user set in order to produce the recommendation list. To cope with problem, they consider that users are connected through a social network and that taxonomy over the items has been defined. These two kinds of information are respectively called social and semantic information. In their contribution the authors suggest combining social information with semantic information in one algorithm in order to compute recommendation lists by visiting a limited part of the social network. In their experiments, the authors use two real data sets, namely Amazon.com and MovieLens, and they compare their algorithms with the standard item-based collaborative filtering and hybrid recommendation algorithms. The results show satisfying accuracy values and a very significant improvement of performance, by exploring a small part of the graph instead of exploring the whole graph.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Biao Cai ◽  
Xiaowang Yang ◽  
Yusheng Huang ◽  
Hongjun Li ◽  
Qiang Sang

Recommendation systems are used when searching online databases. As such they are very important tools because they provide users with predictions of the outcomes of different potential choices and help users to avoid information overload. They can be used on e-commerce websites and have attracted considerable attention in the scientific community. To date, many personalized recommendation algorithms have aimed to improve recommendation accuracy from the perspective of vertex similarities, such as collaborative filtering and mass diffusion. However, diversity is also an important evaluation index in the recommendation algorithm. In order to study both the accuracy and diversity of a recommendation algorithm at the same time, this study introduced a “third dimension” to the commonly used user/product two-dimensional recommendation, and a recommendation algorithm is proposed that is based on a triangular area (TR algorithm). The proposed algorithm combines the Markov chain and collaborative filtering method to make recommendations for users by building a triangle model, making use of the triangulated area. Additionally, recommendation algorithms based on a triangulated area are parameter-free and are more suitable for applications in real environments. Furthermore, the experimental results showed that the TR algorithm had better performance on diversity and novelty for real datasets of MovieLens-100K and MovieLens-1M than did the other benchmark methods.


2020 ◽  
Author(s):  
zhenyan Ji ◽  
Chun Yang ◽  
HUIHUI Wang ◽  
JOS´E ENRIQUE ARMEND´ARIZ-I˜NIGO3 ◽  
MARTA ARCE-URRIZA4

Abstract Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendation, and fusing different types of data can make recommendation more accurate. Most existing fusion recommendation models simply combine the recommendation results from different data instead of fully fusing multi-source heterogeneous data to make recommendations. Furthermore, users’ choices are usually affected by their direct and even indirect friends’ preferences. This paper proposes a hybrid recommendation model BRScS (an acronym for BPR-Review-Score-Social). It fully fuses social data, score, and review together, uses improved BPR model to optimize the ranking, and trains them in a joint representation learning framework to get the top-N recommendations. User trust model is used to introduce social relationships into the rating and review data, PV-DBOW model is used to process the review data, and fully connected neural network is used to process the rating data. Experiments on Yelp public dataset show that the BRScS algorithm proposed outperforms other recommendation algorithms such as BRSc, UserCF, HRSc. BRScS model is also scalable and can fuse new type of data easily.


2020 ◽  
Author(s):  
zhenyan Ji ◽  
Chun Yang ◽  
HUIHUI Wang ◽  
JOS´E ENRIQUE ARMEND´ARIZ-I˜NIGO3 ◽  
MARTA ARCE-URRIZA4

Abstract Recommendation systems are often used to solve the problem of information overload on the Internet. Many types of data can be used for recommendation, and fusing different types of data can make recommendation more accurate. Most existing fusion recommendation models simply combine the recommendation results from different data instead of fully fusing multi-source heterogeneous data to make recommendations. Furthermore, users’ choices are usually affected by their direct and even indirect friends’ preferences. This paper proposes a hybrid recommendation model BRScS (an acronym for BPR-Review-Score-Social). It fully fuses social data, score, and review together, uses improved BPR model to optimize the ranking, and trains them in a joint representation learning framework to get the top-N recommendations. User trust model is used to introduce social relationships into the rating and review data, PV-DBOW model is used to process the review data, and fully connected neural network is used to process the rating data. Experiments on Yelp public dataset show that the BRScS algorithm proposed outperforms other recommendation algorithms such as BRSc, UserCF, HRSc. BRScS model is also scalable and can fuse new type of data easily.


Author(s):  
Ning Liu ◽  
Songlei Jian ◽  
Dongsheng Li ◽  
Yiming Zhang ◽  
Zhiquan Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document