Glycosphingolipids of human umbilical vein endothelial cells and smooth muscle cells

1987 ◽  
Vol 256 (2) ◽  
pp. 435-445 ◽  
Author(s):  
Baiba K. Gillard ◽  
Mary A. Jones ◽  
Donald M. Marcus
1998 ◽  
Vol 275 (4) ◽  
pp. C1031-C1039 ◽  
Author(s):  
Ilia Voskoboinik ◽  
Karin Söderholm ◽  
Ian A. Cotgreave

Human umbilical vein smooth muscle cells (HUVSMCs) utilize extracellular cystine, glutathione (GSH), and N-acetylcysteine (NAC) to synthesize cellular GSH. Extracellular cystine was effective from 5 μM, whereas GSH and NAC were required at 100 μM for comparable effects. The efficacy of extracellular GSH was dependent on de novo GSH synthesis, indicating a dependence on cellular γ-glutamyltransferase (glutamyl transpeptidase). Coculture of syngenetic HUVSMCs and corresponding human umbilical vein endothelial cells (HUVECs) on porous supports restricted cystine- or GSH-stimulated synthesis of HUVSMC GSH when supplied on the “luminal” endothelial side. Thus HUVSMC GSH rapidly attained a steady-state level below that achieved in the absence of interposed HUVECs. HUVSMCs also readily utilize both reduced ascorbate (AA) and oxidized dehydroascorbate (DHAA) over the range 50–500 μM. Phloretin effectively blocked both AA- and DHAA-stimulated assimilation of intracellular AA, indicating a role for a glucose transporter in their transport. Uptake of extracellular AA was also sensitive to extracellular, but not intracellular, thiol depletion. When AA was applied to the endothelial side of the coculture model, assimilation of intracellular AA in HUVSMCs was restricted to a steady-state level below that achieved by free access.


1998 ◽  
Vol 60 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Roland Walter ◽  
Philippe Linscheid ◽  
Nenad Blau ◽  
Lucja Kierat ◽  
Andreas Schaffner ◽  
...  

2011 ◽  
Vol 34 (3) ◽  
pp. 138 ◽  
Author(s):  
Zhi Zhang ◽  
Guang Chu ◽  
Hong-Xian Wu ◽  
Ni Zou ◽  
Bao-Gui Sun ◽  
...  

Objective: The goal of this study was to investigate the crosstalk between vascular endothelial cells (ECs) and smooth muscle cells (SMCs) using a three-dimensional (3-D) co-culture model. In addition, the role of IL-8 in this crosstalk was investigated. Methods: A 3-D co-culture model was constructed using a Transwell chamber system and type I collagen gel. Human umbilical artery smooth muscle cells (HUASMCs) were suspended in the gel and added to the upper compartment of the Transwell. Human umbilical vein endothelial cells (HUVECs) were then grown on the surface of the gel. The growth of HUASMCs was tested with a CFDA SE cell proliferation kit. IL-8 and other bioactive substances were investigated by ELISA and real-time PCR. The alteration of p-ERK expression related to the change in IL-8 levels was also examined by Western blot analysis. Results: The proliferation rate of HUASMCs in the 3-D co-culture model was 0.679 ± 0.057. Secretion and transcription of VEGF, t-PA, NO and VCAM-1 in the 3-D co-culture model were different than in single (2-D) culture. When 3-D co-cultured, IL-8 released by HUVECs was significantly increased (2.35 ± 0.16 fold) (P﹤0.05) and the expression of VCAM-1 from HUASMCs was reduced accordingly (0.55±0.09 fold). In addition, increasing or decreasing the level of IL-8 changed the level of p-ERK and VCAM-1 expression. The reduction of VCAM-1, resulting from increased IL-8, could be blocked by the MEK inhibitor, PD98059. Conclusion: Crosstalk between HUVECs and HUASMCs occurred and was probably mediated by IL-8 in this 3-D co-culture model.


Sign in / Sign up

Export Citation Format

Share Document