The isozyme patterns of glucose-6-phosphate dehydrogenase in blood cells, bone marrow and other human tissues

1974 ◽  
Vol 364 (1) ◽  
pp. 38-44 ◽  
Author(s):  
L.A. Rozenszajn ◽  
D. Joseph
Author(s):  
Shaun R. McCann

Red blood cells, erythrocytes, are unique in that they do not contain a nucleus. This fact facilitates the study of their metabolism. Erythrocytes contain the protein pigment haemoglobin, which is in solution in the cells and consists of globin chains and iron. In this chapter, the development of the understanding of erythrocytes is linked to the blood conditions haemolytic anaemia and paroxysmal nocturnal haemoglobinuria. Premature destruction of erythrocytes, in the absence of blood loss, is termed haemolysis. If the bone marrow is unable to compensate adequately, then anaemia ensues and the condition is called haemolytic anaemia. The underlying defect is a deficiency in the activity of the enzyme glucose-6-phosphate dehydrogenase, termed G6PD deficiency.


2019 ◽  
Vol 18 (14) ◽  
pp. 1936-1951 ◽  
Author(s):  
Raghav Dogra ◽  
Rohit Bhatia ◽  
Ravi Shankar ◽  
Parveen Bansal ◽  
Ravindra K. Rawal

Background: Acute myeloid leukemia is the collective name for different types of leukemias of myeloid origin affecting blood and bone marrow. The overproduction of immature myeloblasts (white blood cells) is the characteristic feature of AML, thus flooding the bone marrow and reducing its capacity to produce normal blood cells. USFDA on August 1, 2017, approved a drug named Enasidenib formerly known as AG-221 which is being marketed under the name Idhifa to treat R/R AML with IDH2 mutation. The present review depicts the broad profile of enasidenib including various aspects of chemistry, preclinical, clinical studies, pharmacokinetics, mode of action and toxicity studies. Methods: Various reports and research articles have been referred to summarize different aspects related to chemistry and pharmacokinetics of enasidenib. Clinical data was collected from various recently published clinical reports including clinical trial outcomes. Result: The various findings of enasidenib revealed that it has been designed to allosterically inhibit mutated IDH2 to treat R/R AML patients. It has also presented good safety and efficacy profile along with 9.3 months overall survival rates of patients in which disease has relapsed. The drug is still under study either in combination or solely to treat hematological malignancies. Molecular modeling studies revealed that enasidenib binds to its target through hydrophobic interaction and hydrogen bonding inside the binding pocket. Enasidenib is found to be associated with certain adverse effects like elevated bilirubin level, diarrhea, differentiation syndrome, decreased potassium and calcium levels, etc. Conclusion: Enasidenib or AG-221was introduced by FDA as an anticancer agent which was developed as a first in class, a selective allosteric inhibitor of the tumor target i.e. IDH2 for Relapsed or Refractory AML. Phase 1/2 clinical trial of Enasidenib resulted in the overall survival rate of 40.3% with CR of 19.3%. Phase III trial on the Enasidenib is still under process along with another trial to test its potency against other cell lines. Edasidenib is associated with certain adverse effects, which can be reduced by investigators by designing its newer derivatives on the basis of SAR studies. Hence, it may come in the light as a potent lead entity for anticancer treatment in the coming years.


2001 ◽  
Vol 344 (3) ◽  
pp. 175-181 ◽  
Author(s):  
William I. Bensinger ◽  
Paul J. Martin ◽  
Barry Storer ◽  
Reginald Clift ◽  
Steven J. Forman ◽  
...  

Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 364-371 ◽  
Author(s):  
Benny J. Chen ◽  
Xiuyu Cui ◽  
Gregory D. Sempowski ◽  
Maria E. Gooding ◽  
Congxiao Liu ◽  
...  

Umbilical cord blood has been increasingly used as a source of hematopoietic stem cells. A major area of concern for the use of cord blood transplantation is the delay in myeloid and lymphoid recovery. To directly compare myeloid and lymphoid recovery using an animal model of bone marrow and cord blood as sources of stem cells, hematopoietic engraftment and immune recovery were studied following infusion of T-cell–depleted adult bone marrow or full-term fetal blood cells, as a model of cord blood in a murine allogeneic transplantation model (C57BL/6 [H-2b] → BALB/c [H-2d]). Allogeneic full-term fetal blood has poorer radioprotective capacity but greater long-term engraftment potential on a cell-to-cell basis compared with T-cell–depleted bone marrow. Allogeneic full-term fetal blood recipients had decreased absolute numbers of T, B, and dendritic cells compared with bone marrow recipients. Splenic T cells in allogeneic full-term fetal blood recipients proliferated poorly, were unable to generate cytotoxic effectors against third-party alloantigens in vitro, and failed to generate alloantigen-specific cytotoxic antibodies in vivo. In addition, reconstituting T cells in fetal blood recipients had decreased mouse T-cell receptorδ single-joint excision circles compared with bone marrow recipients. At a per-cell level, B cells from fetal blood recipients did not proliferate as well as those found in bone marrow recipients. These results suggest that full-term fetal blood can engraft allogeneic hosts across the major histocompatibility barrier with slower hematopoietic engraftment and impaired immune reconstitution.


2017 ◽  
Vol 96 (10) ◽  
pp. 1741-1747 ◽  
Author(s):  
Phatchanat Klaihmon ◽  
Sinmanus Vimonpatranon ◽  
Egarit Noulsri ◽  
Surapong Lertthammakiat ◽  
Usanarat Anurathapan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document