The relationship between the distribution of motor unit mechanical properties and the forces due to recruitment and to rate coding for the generation of muscle force

1983 ◽  
Vol 264 (2) ◽  
pp. 311-315 ◽  
Author(s):  
P.J. Harrison
1996 ◽  
Vol 75 (1) ◽  
pp. 38-50 ◽  
Author(s):  
K. E. Tansey ◽  
B. R. Botterman

1. The aim of this study was to examine the nature of motoneuron firing-rate modulation in type-identified motor units during smoothly graded contractions of the cat medial gastrocnemius (MG) muscle evoked by stimulation of the mesencephalic locomotor region (MLR). Motoneuron discharge patterns, firing rates, and the extent of firing-rate modulation in individual units were studied, as was the extent of concomitant changes in firing rates within pairs of simultaneously active units. 2. In 21 pairs of simultaneously active motor units, studied during 41 evoked contractions, the motoneurons' discharge rates and patterns were measured by processing the cells' recorded action potentials through windowing devices and storing their timing in computer memory. Once recruited, most motoneurons increased their firing rates over a limited range of increasing muscle tension and then maintained a fairly constant firing rate as muscle force continued to rise. Most motoneurons also decreased their firing rates over a slightly larger, but still limited, range of declining muscle force before they were derecruited. Although this was the most common discharge pattern recorded, several other interesting patterns were also seen. 3. The mean firing rate for slow twitch (type S) motor units (27.8 imp/s, 5,092 activations) was found to be significantly different from the mean firing rate for fast twitch (type F) motor units (48.4 imp/s, 11,272 activations; Student's t-test, P < 0.001). There was no significant difference between the mean firing rates of fast twitch, fatigue-resistant (type FR) and fast twitch, fatigable (type FF) motor units. When the relationship between motoneuron firing rate and whole-muscle force was analyzed, it was noted that, in general, smaller, lower threshold motor units began firing at lower rates and reached lower peak firing rates than did larger, higher threshold motor units. These results confirm both earlier experimental observations and predictions made by other investigators on the basis of computer simulations of the cat MG motor pool, but are in contrast to motor-unit discharge behavior recorded in some human motor-unit studies. 4. The extent of concomitant changes in firing rate within pairs of simultaneously active motor units was examined to estimate the extent of simultaneous motoneuron firing-rate modulation across the motoneuron pool. A smoothed (5 point sliding average) version of the two motoneurons' instantaneous firing rates was plotted against each other, and the slope and statistical significance of the relationship was determined. In 16 motor-unit pairs, the slope of the motoneurons' firing-rate relationship was significantly distinct from 0. Parallel firing-rate modulation (< 10-fold difference in firing rate change reflected by a slope of > 0.1) was noted only in pairs containing motor units of like physiological type and then only if they were of similar recruitment threshold. 5. Other investigators have demonstrated that changes in a motoneuron's "steady-state" firing rate predictably reflect changes in the amount of effective synaptic current that cell is receiving. The finding in the present study of limited parallel firing-rate modulation between simultaneously active motoneurons would suggest that changes in the synaptic drive to the various motoneurons of the pool is unevenly distributed. This finding, in addition to the findings of orderly motor-unit recruitment and the relationship between motor-unit recruitment threshold and motoneuron firing rate, cannot be adequately accommodated for by the existing models of the synaptic organization in motoneuron pools. Therefore a new model of the synaptic organization within the motoneuron pool has been proposed.


2004 ◽  
Vol 82 (8-9) ◽  
pp. 645-661 ◽  
Author(s):  
Tessa Gordon ◽  
Christine K Thomas ◽  
John B Munson ◽  
Richard B Stein

Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.Key words: motor unit size, motor unit recruitment, innervation ratio, reinnervation.


1996 ◽  
Vol 12 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Arnold G. Nelson

It has been shown that the rate of tension generation(dP/dt)continues to increase with increasing stimulation rates, even after maximal tetanic tension has been achieved. SincedP/dtis directly proportional to unloaded shortening velocity, it was questioned whether supramaximal stimulation rates would increase shortening velocity. To test the relationship of velocity and stimulation rate, slack tests were performed on motor units isolated in the rat soleus muscles. For each motor unit tested, two slack tests were performed at two different stimulation rates: one rate yielded a maximal tetanic tension with a "slow"dP/dt(PO) and the other rate yielded a maximal tetanic tension with a "fast"dP/dt(RG). The two stimulation rates (PO and RG) had significantly different effects (p <.05) on motor unit shortening velocity, with the RG rate yielding a shortening velocity greater than that of PO by an average of 13 ± 6%. This suggests that rate coding could be used to grade motor unit power production by grading force production and/or shortening velocity.


2019 ◽  
Vol 597 (7) ◽  
pp. 1873-1887 ◽  
Author(s):  
Alessandro Del Vecchio ◽  
Andrea Casolo ◽  
Francesco Negro ◽  
Matteo Scorcelletti ◽  
Ilenia Bazzucchi ◽  
...  

2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


2006 ◽  
Vol 100 (6) ◽  
pp. 1928-1937 ◽  
Author(s):  
Kevin G. Keenan ◽  
Dario Farina ◽  
Roberto Merletti ◽  
Roger M. Enoka

The purpose of the study was to evaluate the influence of selected physiological parameters on amplitude cancellation in the simulated surface electromyogram (EMG) and the consequences for spike-triggered averages of motor unit potentials derived from the interference and rectified EMG signals. The surface EMG was simulated from prescribed recruitment and rate coding characteristics of a motor unit population. The potentials of the motor units were detected on the skin over a hand muscle with a bipolar electrode configuration. Averages derived from the EMG signal were generated using the discharge times for each of the 24 motor units with lowest recruitment thresholds from a population of 120 across three conditions: 1) excitation level; 2) motor unit conduction velocity; and 3) motor unit synchronization. The area of the surface-detected potential was compared with potentials averaged from the interference, rectified, and no-cancellation EMGs. The no-cancellation EMG comprised motor unit potentials that were rectified before they were summed, thereby preventing cancellation between the opposite phases of the potentials. The percent decrease in area of potentials extracted from the rectified EMG was linearly related to the amount of amplitude cancellation in the interference EMG signal, with the amount of cancellation influenced by variation in excitation level and motor unit conduction velocity. Motor unit synchronization increased potentials derived from both the rectified and interference EMG signals, although cancellation limited the increase in area for both potentials. These findings document the influence of amplitude cancellation on motor unit potentials averaged from the surface EMG and the consequences for using the procedure to characterize motor unit properties.


Friction ◽  
2021 ◽  
Author(s):  
Shaoqing Xue ◽  
Hanglin Li ◽  
Yumei Guo ◽  
Baohua Zhang ◽  
Jiusheng Li ◽  
...  

AbstractWater is as an economic, eco-friendly, and efficient lubricant that has gained widespread attention for manufacturing. Using graphene oxide (GO)-based materials can improve the lubricant efficacy of water lubrication due to their outstanding mechanical properties, water dispersibility, and broad application scenarios. In this review, we offer a brief introduction about the background of water lubrication and GO. Subsequently, the synthesis, structure, and lubrication theory of GO are analyzed. Particular attention is focused on the relationship between pH, concentration, and lubrication efficacy when discussing the tribology behaviors of pristine GO. By compounding or reacting GO with various modifiers, amounts of GO-composites are synthesized and applied as lubricant additives or into frictional pairs for different usage scenarios. These various strategies of GO-composite generate interesting effects on the tribology behaviors. Several application cases of GO-based materials are described in water lubrication, including metal processing and bio-lubrication. The advantages and drawbacks of GO-composites are then discussed. The development of GO-based materials for water lubrication is described including some challenges.


2018 ◽  
Vol 31 (3) ◽  
pp. 261-272 ◽  
Author(s):  
Yixiang Zhang ◽  
Masahiko Miyauchi ◽  
Steven Nutt

A new polymerized monomeric reactant (PMR)-type polyimide, designated TriA X, was investigated to determine polymer structure, processability, thermal, and mechanical properties and establish the relationship between the molecular structure and those properties. TriA X is a PMR-type polyimide with an asymmetric, irregular, and nonplanar backbone. Both the imide oligomers and the cross-linked polyimides of TriA X exhibited loose-packed amorphous structures, independent of thermal processing. The peculiar structures were attributed to the asymmetric backbone, which effectively prevented the formation of closed-packed chain stacking typically observed in polyimides. The imide oligomers exhibited a lower melt viscosity than a control imide oligomer (symmetric and semi-crystalline), indicating a higher chain mobility above the glass transition temperature ( Tg). The cured polyimide exhibited a Tg = 362°C and a decomposition temperature = 550°C. The cross-linked TriA X exhibited exceptional toughness and ductility (e.g. 15.1% at 23°C) for a polyimide, which was attributed to the high-molecular-weight oligomer and loose-packed amorphous structure. The thermal and mechanical properties of TriA X surpass those of PMR-15 and AFR-PE-4.


Sign in / Sign up

Export Citation Format

Share Document