Dynamic compressive strength and failure of steel reinforced epoxy composites

Composites ◽  
1971 ◽  
Vol 2 (4) ◽  
pp. 259
2018 ◽  
Vol 913 ◽  
pp. 529-535
Author(s):  
Zhi Ming Yang ◽  
Jin Xu Liu ◽  
Xin Ya Feng ◽  
Shu Kui Li ◽  
Xin Lei Wang ◽  
...  

In order to improve the mechanical properties of basalt fiber/epoxy composites, carboxylic CNTs were filled into the epoxy matrix of basalt fiber/epoxy composites. Firstly, the carboxylic CNTs filled epoxy composites with different carboxylic CNTs content were studied. Quasi-static and dynamic compression results show that when the content of carboxylic CNTs increased from 0wt% to 1wt%, both ultimate quasi-static and dynamic compressive strength of CNTs filled epoxy composites showed increasing tendencies. However when the content of carboxylic CNTs increased from 1 wt% to 1.5 wt% both ultimate quasi-static and dynamic compressive had decreasing tendencies. Base on above results, carboxylic CNTs (1wt%) filled basalt fiber/epoxy composites were fabricated by mould pressing method. Quasi-static and dynamic compression results showed that both ultimate quasi-static and ultimate dynamic compressive strength of carboxylic CNTs filled basalt fiber/epoxy composite were enhanced compared with those of basalt fiber/epoxy composites without CNTs. However, the critical failure strain were all lower than those of basalt fiber/epoxy composites without CNTs. Failure mechanism analysis showed that the carboxylic CNTs was beneficial for forming good interfacial bonding between epoxy matrix and basalt fibers, and the advantage of high axial tensile strength of basalt fibers could be fully utilized, which is responsible for the enhanced ultimate compressive strength of carboxylic CNTs filled basalt fiber/epoxy composites.


1971 ◽  
Vol 5 (3) ◽  
pp. 362-377 ◽  
Author(s):  
R.L. S ◽  
G.E. Nevill ◽  
C.A. Ross ◽  
E.R. Jones

1996 ◽  
Vol 31 (6) ◽  
pp. 549-553 ◽  
Author(s):  
A. V. Plastinin ◽  
V. V. Sil'vestrov

Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng-quan Zhou ◽  
Da-wei Zhou ◽  
Yong-fei Zhang ◽  
Wei-jian Wang ◽  
Dongwei Li

To probe into the dynamic mechanical properties of expansive soil stabilized by fly ash and lime under impact load, the split-Hopkinson pressure bar (SHPB) test was carried out in this study. An analysis was made on the dynamic mechanical property and final fracture morphology of stabilized soil, and the failure mechanism was also explored from the perspective of energy dissipation. According to the test results, under the impact pressure of 0.2 MPa, plain soil and pure fly ash-stabilized soil exhibit strong plasticity. After the addition of lime, the stabilized soil shows obvious brittle failure. The dynamic compressive strength and absorbed energy of stabilized soil first increase and then decrease with the change of mix proportions. Both the dynamic compressive strength and the absorbed energy reach the peak value at the content of 20% fly ash and 5% lime (20% F + 5% L). In the process of the test, most of the incident energy is reflected back to the incident bar. The absorbed energy of stabilized soil increases linearly with the rise of dynamic compressive strength, while the absorbed energy is negatively correlated with the fractal dimension. The fractal dimension of pore morphology of the plain soil is lower than that of the fly ash-lime combined stabilized soil when it comes to the two different magnification ratios. The test results indicate that the modifier content of 20% F + 5% L can significantly improve the dynamic mechanical properties of the expansive soil.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ronghua Shu ◽  
Tubing Yin ◽  
Xibing Li

Variation in the heating rate due to different geothermal gradients is a cause of much concern in underground rock engineering such as deep sea and underground tunnels, nuclear waste disposal, and deep mining. By using a split Hopkinson pressure bar (SHPB) and variable-speed heating furnace, the dynamic compressive properties of granite were obtained after treatments at different heating rates and temperatures; these properties mainly included the dynamic compressive strength, peak strain, and dynamic elastic modulus. The mechanism of heating rate action on the granite was simultaneously analyzed, and the macroscopic physical properties were discussed. The microscopic morphological features were obtained by scanning electron microscopy (SEM), and the crack propagation was determined by high-speed video camera. The experimental results show that the dynamic compressive strength and elastic modulus both show an obvious trend of a decrease with the increasing heating rate and temperature; the opposite phenomenon is observed for the peak strain. The relationships among the dynamic compressive properties and temperature could be described by the quadratic function. The ductility of granite is enhanced, and the number and size of cracks increase gradually when the heating rate and temperature increase. The microstructure of rock is weakened by the increased thermal stress, which finally affects the dynamic compressive properties of rock.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Qi Ping ◽  
Chuanliang Zhang ◽  
Haipeng Su ◽  
Hao Zhang

To study the effect of high temperature on the dynamic mechanical properties and energy evolution characteristic of limestone specimens, the basic physical parameters of limestone specimens that cool naturally after experiencing high temperatures of room temperature (25°C), 200°C, 400°C, and 600°C were tested. In addition, compression tests with 6 impact loading conditions were conducted using SHPB device. The changes of basic physical properties of limestone before and after temperature were analyzed, and the relationship among dynamic characteristic parameters, energy evolution characteristics, and temperature was discussed. Test results indicated that, with the increase of temperature, the surface color of specimen changed from gray-black to gray-white, and its volume increased, while the mass, density, and P-wave velocity of specimen decreased. The dynamic compressive stress-strain curve of limestone specimens after different high-temperature effects could be divided into three stages: elasticity stage, yield stage, and failure stage. Failure mode of specimen was in the form of spalling axial splitting, and the degree of fragmentation increased with the increase of the temperature and incident energy. With the increase of the temperature, the reflection energy, the absorption energy, the dynamic compressive strength, and dynamic elastic modulus of rock decreased, while its transmission energy, the dynamic peak strain, and strain rate increased. The dynamic compressive strength, dynamic elastic modulus, dynamic strain, and strain rate of limestone specimens all increased with the increase of incident energy, showing a quadratic function relationship.


Author(s):  
Shi Liu ◽  
Jinyu Xu

AbstractIn order to study the dynamic compression mechanical properties of engineering rock under high strain rate (100~102 S−1)loads, dynamic compression tests of three common engineering rocks (marble, sandstone and granite) taken from the Qinling Mountain are studied subjected to five different kinds of shock air pressure using Φ 100 mm split Hopkinson pressure bar test system improved with purple copper waveform shaper. The dynamic compression stress-strain curves, dynamic compressive strength, peak strain, energy absorption rate and elastic modulus of three rocks variation with strain rate are researched. The dynamic compression failure modes under different strain rates are analyzed. Then the three-dimensional numerical simulations of waveform shaper shaping effects and stress wave propagation in the SHPB tests are carried out to reproduce the test results. The research results show that the dynamic compression stress-strain curves show certain discreteness, and there is an obvious rebound phenomenon after the peak. With the increase in strain rate, the dynamic compressive strength, peak strain and energy absorption rate are all in a certain degree of increase, but the elastic modulus have no obvious change trend. Under the same strain rate, the dynamic compressive strength of granite is greatest while of sandstone is least. With the increase in strain rate, the margin of increase in peak strain and energy absorption rate of granite is greatest while of sandstone is least. The failure modes of the sample experience a developing process from outside to inside with the increase of strain rate.


Sign in / Sign up

Export Citation Format

Share Document