Driving of slow oscillations in the somatosensory system of the cat

1977 ◽  
Vol 42 (6) ◽  
pp. 795-808 ◽  
Author(s):  
J.L Rush ◽  
J.A Kusske ◽  
J.W Hutchison ◽  
M Verzeano
1976 ◽  
Vol 41 (2) ◽  
pp. 168-178 ◽  
Author(s):  
J.L Rush ◽  
J.A Kusske ◽  
R.W Porter ◽  
M Verzeano

2021 ◽  
Vol 10 (2) ◽  
pp. 239
Author(s):  
Dalia Rega ◽  
Mika Aiko ◽  
Nicolás Peñaranda ◽  
Amparo Urios ◽  
Juan-José Gallego ◽  
...  

Cirrhotic patients may experience alterations in the peripheral nervous system and in somatosensory perception. Impairment of the somatosensory system could contribute to cognitive and motor alterations characteristic of minimal hepatic encephalopathy (MHE), which affects up to 40% of cirrhotic patients. We assessed the relationship between MHE and alterations in thermal, vibration, and/or heat pain sensitivity in 58 cirrhotic patients (38 without and 20 with MHE according to Psychometric Hepatic Encephalopathy Score) and 39 controls. All participants underwent attention and coordination tests, a nerve conduction study, autonomic function testing, and evaluation of sensory thresholds (vibration, cooling, and heat pain detection) by electromyography and quantitative sensory testing. The detection thresholds for cold and heat pain on the foot were higher in patients with, than those without MHE. This hyposensitivity was correlated with attention deficits. Reaction times in the foot were longer in patients with, than without MHE. Patients with normal sural nerve amplitude showed altered thermal sensitivity and autonomic function, with stronger alterations in patients with, than in those without MHE. MHE patients show a general decrease in cognitive and sensory abilities. Small fibers of the autonomic nervous system and thermal sensitivity are altered early on in MHE, before large sensory fibers. Quantitative sensory testing could be used as a marker of MHE.


Author(s):  
Michelle A. Frazer ◽  
Yesenia Cabrera ◽  
Rockelle S. Guthrie ◽  
Gina R. Poe

Abstract Purpose of review This paper reviews all optogenetic studies that directly test various sleep states, traits, and circuit-level activity profiles for the consolidation of different learning tasks. Recent findings Inhibiting or exciting neurons involved either in the production of sleep states or in the encoding and consolidation of memories reveals sleep states and traits that are essential for memory. REM sleep, NREM sleep, and the N2 transition to REM (characterized by sleep spindles) are integral to memory consolidation. Neural activity during sharp-wave ripples, slow oscillations, theta waves, and spindles are the mediators of this process. Summary These studies lend strong support to the hypothesis that sleep is essential to the consolidation of memories from the hippocampus and the consolidation of motor learning which does not necessarily involve the hippocampus. Future research can further probe the types of memory dependent on sleep-related traits and on the neurotransmitters and neuromodulators required.


2021 ◽  
Vol 70 (4) ◽  
pp. 429-444
Author(s):  
Franz Nürnberger ◽  
Stephan Leisengang ◽  
Daniela Ott ◽  
Jolanta Murgott ◽  
Rüdiger Gerstberger ◽  
...  

Abstract Objective Bacterial lipopolysaccharide (LPS) may contribute to the manifestation of inflammatory pain within structures of the afferent somatosensory system. LPS can induce a state of refractoriness to its own effects termed LPS tolerance. We employed primary neuro-glial cultures from rat dorsal root ganglia (DRG) and the superficial dorsal horn (SDH) of the spinal cord, mainly including the substantia gelatinosa to establish and characterize a model of LPS tolerance within these structures. Methods Tolerance was induced by pre-treatment of both cultures with 1 µg/ml LPS for 18 h, followed by a short-term stimulation with a higher LPS dose (10 µg/ml for 2 h). Cultures treated with solvent were used as controls. Cells from DRG or SDH were investigated by means of RT-PCR (expression of inflammatory genes) and immunocytochemistry (translocation of inflammatory transcription factors into nuclei of cells from both cultures). Supernatants from both cultures were assayed for tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by highly sensitive bioassays. Results At the mRNA-level, pre-treatment with 1 µg/ml LPS caused reduced expression of TNF-α and enhanced IL-10/TNF-α expression ratios in both cultures upon subsequent stimulation with 10 µg/ml LPS, i.e. LPS tolerance. SDH cultures further showed reduced release of TNF-α into the supernatants and attenuated TNF-α immunoreactivity in microglial cells. In the state of LPS tolerance macrophages from DRG and microglial cells from SDH showed reduced LPS-induced nuclear translocation of the inflammatory transcription factors NFκB and NF-IL6. Nuclear immunoreactivity of the IL-6-activated transcription factor STAT3 was further reduced in neurons from DRG and astrocytes from SDH in LPS tolerant cultures. Conclusion A state of LPS tolerance can be induced in primary cultures from the afferent somatosensory system, which is characterized by a down-regulation of pro-inflammatory mediators. Thus, this model can be applied to study the effects of LPS tolerance at the cellular level, for example possible modifications of neuronal reactivity patterns upon inflammatory stimulation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4666
Author(s):  
Paramita Basu ◽  
Camelia Maier ◽  
Arpita Basu

Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.


1997 ◽  
Vol 91 (6) ◽  
pp. 273-284 ◽  
Author(s):  
R Lestienne ◽  
A Hervé-Minvielle ◽  
D Robinson ◽  
L Briois ◽  
SJ Sara

1960 ◽  
Vol 198 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Gertrude Falk ◽  
Jorge F. Landa

Replacement of Ringer's chloride by a variety of nonpenetrating anions results in prolonged electrical and mechanical responses of muscle to stimulation. The ‘negative after-potential’ is characterized by a slowly increasing secondary depolarization which reaches a stable plateau lasting as long as 2 minutes. After-discharge frequently occurs during early depolarization. In most fibers repolarization is relatively abrupt, but in some, slow oscillations resembling relaxation oscillations arise following the plateau, grow gradually in amplitude and, only when they are of sufficient amplitude, does the membrane repolarize. Prolonged depolarization can still be produced when the spike has failed. At times, fibers may respond with short-duration action potentials, but may be primed to give prolonged responses by previous stimuli or by increase of external potassium. Addition of chloride has no effect below a critical concentration. Reduction of sodium to 25% of normal does not change plateau level or duration. Duration of the plateau phase is decreased by potassium.


1992 ◽  
Vol 68 (2) ◽  
pp. 518-527 ◽  
Author(s):  
T. P. Pons ◽  
P. E. Garraghty ◽  
M. Mishkin

1. Selective ablations of the hand representations in postcentral cortical areas 3a, 3b, 1, and 2 were made in different combinations to determine each area's contribution to the responsivity and modality properties of neurons in the hand representation in SII. 2. Ablations that left intact only the postcentral areas that process predominantly cutaneous inputs (i.e., areas 3b and 1) yielded SII recording sites responsive to cutaneous stimulation and none driven exclusively by high-intensity or "deep" stimulation. Conversely, ablations that left intact only the postcentral areas that process predominantly deep receptor inputs (i.e., areas 3a and 2) yielded mostly SII recording sites that responded exclusively to deep stimulation. 3. Ablations that left intact only area 3a or only area 2 yielded substantial and roughly equal reductions in the number of deep receptive fields in SII. By contrast, ablations that left intact only area 3b or only area 1 yielded unequal reductions in the number of cutaneous receptive fields in SII: a small reduction when area 3b alone was intact but a somewhat larger one when only area 1 was intact. 4. Finally, when the hand representation in area 3b was ablated, leaving areas 3a, 1, and 2 fully intact, there was again a substantial reduction in the encounter rate of cutaneous receptive fields. 5. The partial ablations often led to unresponsive sites in the SII hand representation. In SII representations other than of the hand no such unresponsive sites were found and there were no substantial changes in the ratio of cutaneous to deep receptive fields, indicating that the foregoing results were not due to long-lasting postsurgical depression or effects of anesthesia. 6. The findings indicate that modality-specific information is relayed from postcentral cortical areas to SII along parallel channels, with cutaneous inputs transmitted via areas 3b and 1, and deep inputs via areas 3a and 2. Further, area 3b provides the major source of cutaneous input to SII, directly and perhaps also via area 1. 7. The results are in line with accumulating anatomic and electrophysiologic evidence pointing to an evolutionary shift in the organization of the somatosensory system from the general mammalian plan, in which tactile information is processed in parallel in SI and SII, to a new organization in higher primates in which the processing of tactile information proceeds serially from SI to SII. The presumed functional advantages of this evolutionary shift are unknown.


Sign in / Sign up

Export Citation Format

Share Document