Expression of photoreceptor cyclic nucleotide-gated cation channel α subunit (CNGCα) in the liver and skeletal muscle

FEBS Letters ◽  
1996 ◽  
Vol 395 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Li Feng ◽  
Iswari Subbaraya ◽  
Nair Yamamoto ◽  
Wolfgang Baehr ◽  
Naomi Kraus-Friedmann
1999 ◽  
Vol 87 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Xiao-Yan Han ◽  
Wei Wang ◽  
Raili Myllylä ◽  
Paula Virtanen ◽  
Jarmo Karpakka ◽  
...  

There is evidence that immobilization causes a decrease in total collagen synthesis in skeletal muscle within a few days. In this study, early immobilization effects on the expression of prolyl 4-hydroxylase (PH) and the main fibrillar collagens at mRNA and protein levels were investigated in rat skeletal muscle. The right hindlimb was immobilized in full plantar flexion for 1, 3, and 7 days. Steady-state mRNAs for α- and β-subunits of PH and type I and III procollagen, PH activity, and collagen content were measured in gastrocnemius and plantaris muscles. Type I and III procollagen mRNAs were also measured in soleus and tibialis anterior muscles. The mRNA level for the PH α-subunit decreased by 49 and 55% ( P < 0.01) in gastrocnemius muscle and by 41 and 39% ( P < 0.05) in plantaris muscle after immobilization for 1 and 3 days, respectively. PH activity was decreased ( P < 0.05–0.01) in both muscles at days 3 and 7. The mRNA levels for type I and III procollagen were decreased by 26–56% ( P < 0.05–0.001) in soleus, tibialis anterior, and plantaris muscles at day 3. The present results thus suggest that pretranslational downregulation plays a key role in fibrillar collagen synthesis in the early phase of immobilization-induced muscle atrophy.


2004 ◽  
Vol 287 (4) ◽  
pp. E739-E743 ◽  
Author(s):  
Burton F. Holmes ◽  
David B. Lang ◽  
Morris J. Birnbaum ◽  
James Mu ◽  
G. Lynis Dohm

An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK α-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.


2017 ◽  
Vol 114 (45) ◽  
pp. E9559-E9568 ◽  
Author(s):  
Qing He ◽  
Richard Bouley ◽  
Zun Liu ◽  
Marc N. Wein ◽  
Yan Zhu ◽  
...  

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98863 ◽  
Author(s):  
Zahra Nourian ◽  
Min Li ◽  
M. Dennis Leo ◽  
Jonathan H. Jaggar ◽  
Andrew P. Braun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document